These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 34068635)

  • 1. Training Data Selection and Optimal Sensor Placement for Deep-Learning-Based Sparse Inertial Sensor Human Posture Reconstruction.
    Zheng Z; Ma H; Yan W; Liu H; Yang Z
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34068635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion Poser: 3D Human Pose Estimation Using Sparse IMUs and Head Trackers in Real Time.
    Kim M; Lee S
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusion of Multiple Lidars and Inertial Sensors for the Real-Time Pose Tracking of Human Motion.
    Patil AK; Balasubramanyam A; Ryu JY; B N PK; Chakravarthi B; Chai YH
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time Coherent Full-Body Poses Estimated Using Only Five Inertial Sensors: Deep versus Shallow Learning.
    Wouda FJ; Giuberti M; Rudigkeit N; van Beijnum BF; Poel M; Veltink PH
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31461958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion.
    Dehzangi O; Taherisadr M; ChangalVala R
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Pose Estimation from Video and IMUs.
    Marcard Tv; Pons-Moll G; Rosenhahn B
    IEEE Trans Pattern Anal Mach Intell; 2016 Aug; 38(8):1533-47. PubMed ID: 26829774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing motion tracking accuracy of a low-cost 3D video sensor using a biomechanical model, sensor fusion, and deep learning.
    Agami S; Riemer R; Berman S
    Front Rehabil Sci; 2022; 3():956381. PubMed ID: 36188943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paddle Stroke Analysis for Kayakers Using Wearable Technologies.
    Liu L; Wang HH; Qiu S; Zhang YC; Hao ZD
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33573000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors.
    Wouda FJ; Giuberti M; Bellusci G; Maartens E; Reenalda J; van Beijnum BF; Veltink PH
    Front Physiol; 2018; 9():218. PubMed ID: 29623042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Low-Cost Inertial Measurement Unit Motion Capture System for Operation Posture Collection and Recognition.
    Yin M; Li J; Wang T
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion Inference Using Sparse Inertial Sensors, Self-Supervised Learning, and a New Dataset of Unscripted Human Motion.
    Geissinger JH; Asbeck AT
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic identification of inertial sensor placement on human body segments during walking.
    Weenk D; van Beijnum BJ; Baten CT; Hermens HJ; Veltink PH
    J Neuroeng Rehabil; 2013 Mar; 10():31. PubMed ID: 23517757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bi-articular model for scapular-humeral rhythm reconstruction through data from wearable sensors.
    Lorussi F; Carbonaro N; De Rossi D; Tognetti A
    J Neuroeng Rehabil; 2016 Apr; 13():40. PubMed ID: 27107970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensor-Based Wearable Systems for Monitoring Human Motion and Posture: A Review.
    Huang X; Xue Y; Ren S; Wang F
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots.
    Passon A; Schauer T; Seel T
    Front Robot AI; 2020; 7():554639. PubMed ID: 33501318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of kinematics from inertial measurement units using a combined deep learning and optimization framework.
    Rapp E; Shin S; Thomsen W; Ferber R; Halilaj E
    J Biomech; 2021 Feb; 116():110229. PubMed ID: 33485143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L
    Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.