BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34068670)

  • 1. Reduced Etch Lag and High Aspect Ratios by Deep Reactive Ion Etching (DRIE).
    Gerlt MS; Läubli NF; Manser M; Nelson BJ; Dual J
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34068670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time multiplexed deep reactive ion etching of germanium and silicon-A comparison of mechanisms and application to x-ray optics.
    Genova VJ; Agyeman-Budu DN; Woll AR
    J Vac Sci Technol B Nanotechnol Microelectron; 2018 Jan; 36(1):011205. PubMed ID: 29333339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metasurface Fabrication by Cryogenic and Bosch Deep Reactive Ion Etching.
    Baracu AM; Dirdal CA; Avram AM; Dinescu A; Muller R; Jensen GU; Thrane PCV; Angelskår H
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33946701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio Microfabrication.
    Huff M
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.
    Miao H; Chen L; Mirzaeimoghri M; Kasica R; Wen H
    J Microelectromech Syst; 2016 Oct; 25(5):963-967. PubMed ID: 27799726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced deep reactive-ion etching technology for hollow microneedles for transdermal blood sampling and drug delivery.
    Liu Y; Eng PF; Guy OJ; Roberts K; Ashraf H; Knight N
    IET Nanobiotechnol; 2013 Jun; 7(2):59-62. PubMed ID: 24046906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh Resolution Titanium Deep Reactive Ion Etching.
    Woo BWK; Gott SC; Peck RA; Yan D; Rommelfanger MW; Rao MP
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20161-20168. PubMed ID: 28534392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ga(+) beam lithography for nanoscale silicon reactive ion etching.
    Henry MD; Shearn MJ; Chhim B; Scherer A
    Nanotechnology; 2010 Jun; 21(24):245303. PubMed ID: 20484788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching.
    Chekurov N; Grigoras K; Peltonen A; Franssila S; Tittonen I
    Nanotechnology; 2009 Feb; 20(6):065307. PubMed ID: 19417383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different methods to alter surface morphology of high aspect ratio structures.
    Leber M; Shandhi MM; Hogan A; Solzbacher F; Bhandari R; Negi S
    Appl Surf Sci; 2016 Mar; 365():180-190. PubMed ID: 26806992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep reactive ion etching of cylindrical nanopores in silicon for photonic crystals.
    Goodwin MJ; Harteveld CAM; de Boer MJ; Vos WL
    Nanotechnology; 2023 Mar; 34(22):. PubMed ID: 36928122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key Processes of Silicon-On-Glass MEMS Fabrication Technology for Gyroscope Application.
    Ma Z; Wang Y; Shen Q; Zhang H; Guo X
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29673221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards high-throughput large-area metalens fabrication using UV-nanoimprint lithography and Bosch deep reactive ion etching.
    Dirdal CA; Jensen GU; Angelskår H; Vaagen Thrane PC; Gjessing J; Ordnung DA
    Opt Express; 2020 May; 28(10):15542-15561. PubMed ID: 32403580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography.
    Woldering LA; Willem Tjerkstra R; Jansen HV; Setija ID; Vos WL
    Nanotechnology; 2008 Apr; 19(14):145304. PubMed ID: 21817758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars.
    Henry MD; Walavalkar S; Homyk A; Scherer A
    Nanotechnology; 2009 Jun; 20(25):255305. PubMed ID: 19487807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Aspect Ratio Nanoscale Pores through BCP-Based Metal Oxide Masks and Advanced Dry Etching.
    Esmeraldo Paiva A; Gerlt MS; Läubli NF; Prochukhan N; Baez Vasquez JF; Kaminski Schierle GS; Morris MA
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):57960-57969. PubMed ID: 37861980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of silicon nanostructures with a combination of spacer technology and deep reactive ion etching.
    Bien DC; Lee HW; Badaruddin SA
    Nanoscale Res Lett; 2012 Jun; 7(1):288. PubMed ID: 22672745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of High-Density Out-of-Plane Microneedle Arrays with Various Heights and Diverse Cross-Sectional Shapes.
    Roh H; Yoon YJ; Park JS; Kang DH; Kwak SM; Lee BC; Im M
    Nanomicro Lett; 2021 Dec; 14(1):24. PubMed ID: 34888758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and Characterization of Silicon Micro-Funnels and Tapered Micro-Channels for Stochastic Sensing Applications.
    Archer MJ; Ligler FS
    Sensors (Basel); 2008 Jun; 8(6):3848-3872. PubMed ID: 27879912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wafer-Scale Fabrication of Ultra-High Aspect Ratio, Microscale Silicon Structures with Smooth Sidewalls Using Metal Assisted Chemical Etching.
    Zhang X; Yao C; Niu J; Li H; Xie C
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.