These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34068777)

  • 1. Relevance of Drift Components and Unit-to-Unit Variability in the Predictive Maintenance of Low-Cost Electrochemical Sensor Systems in Air Quality Monitoring.
    Tancev G
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration and Inter-Unit Consistency Assessment of an Electrochemical Sensor System Using Machine Learning.
    Apostolopoulos ID; Androulakis S; Kalkavouras P; Fouskas G; Pandis SN
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Evaluation of A Novel and Cost-Effective Approach for Low-Cost NO₂ Sensor Drift Correction.
    Sun L; Westerdahl D; Ning Z
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empiric Unsupervised Drifts Correction Method of Electrochemical Sensors for in Field Nitrogen Dioxide Monitoring.
    Laref R; Losson E; Sava A; Siadat M
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34064036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering approaches to improve the performance of low cost air pollution sensors.
    Smith KR; Edwards PM; Evans MJ; Lee JD; Shaw MD; Squires F; Wilde S; Lewis AC
    Faraday Discuss; 2017 Aug; 200():621-637. PubMed ID: 28608899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward continuous amperometric gas sensing in ionic liquids: rationalization of signal drift nature and calibration methods.
    Lin L; Zeng X
    Anal Bioanal Chem; 2018 Jul; 410(19):4587-4596. PubMed ID: 29947905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration Model of a Low-Cost Air Quality Sensor Using an Adaptive Neuro-Fuzzy Inference System.
    Alhasa KM; Mohd Nadzir MS; Olalekan P; Latif MT; Yusup Y; Iqbal Faruque MR; Ahamad F; Abd Hamid HH; Aiyub K; Md Ali SH; Khan MF; Abu Samah A; Yusuff I; Othman M; Tengku Hassim TMF; Ezani NE
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online Monitoring of Sensor Calibration Status to Support Condition-Based Maintenance.
    Martins A; Fonseca I; Farinha JT; Reis J; Cardoso AJM
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Edge Transfer Learning Approach for Calibrating Soil Electrical Conductivity Sensors.
    Lin YW; Lin YB; Chang TC; Lu BX
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concept Drift Mitigation in Low-Cost Air Quality Monitoring Networks.
    D'Elia G; Ferro M; Sommella P; Ferlito S; De Vito S; Di Francia G
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of low-cost indoor air quality monitoring devices: Recent advancements.
    Chojer H; Branco PTBS; Martins FG; Alvim-Ferraz MCM; Sousa SIV
    Sci Total Environ; 2020 Jul; 727():138385. PubMed ID: 32498203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data fusion for air quality mapping using low-cost sensor observations: Feasibility and added-value.
    Gressent A; Malherbe L; Colette A; Rollin H; Scimia R
    Environ Int; 2020 Oct; 143():105965. PubMed ID: 32688160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensor drift and predicted calibration intervals of handheld temperature and relative humidity meters under residential field-use conditions.
    Johnston James D ; Magnusson BM; Eggett D; Mumford K; Collingwood SC; Bernhardt SA
    J Environ Health; 2014 Oct; 77(3):22-8. PubMed ID: 25603651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. End-user perspective of low-cost sensors for outdoor air pollution monitoring.
    Rai AC; Kumar P; Pilla F; Skouloudis AN; Di Sabatino S; Ratti C; Yasar A; Rickerby D
    Sci Total Environ; 2017 Dec; 607-608():691-705. PubMed ID: 28709103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution to the Problem of Calibration of Low-Cost Air Quality Measurement Sensors in Networks.
    Miskell G; Salmond JA; Williams DE
    ACS Sens; 2018 Apr; 3(4):832-843. PubMed ID: 29508622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Smart Rig for Calibration of Gas Sensor Nodes.
    Benammar MA; Ahmad SHM; Abdaoui A; Tariq H; Touati F; Al-Hitmi M; Crescini D
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging Temporal Information to Improve Machine Learning-Based Calibration Techniques for Low-Cost Air Quality Sensors.
    Ali S; Alam F; Potgieter J; Arif KM
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Node-to-node field calibration of wireless distributed air pollution sensor network.
    Kizel F; Etzion Y; Shafran-Nathan R; Levy I; Fishbain B; Bartonova A; Broday DM
    Environ Pollut; 2018 Feb; 233():900-909. PubMed ID: 28951042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration Update and Drift Correction for Electronic Noses and Tongues.
    Rudnitskaya A
    Front Chem; 2018; 6():433. PubMed ID: 30320065
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.