BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 34068811)

  • 1. 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review.
    Carvalho V; Gonçalves I; Lage T; Rodrigues RO; Minas G; Teixeira SFCF; Moita AS; Hori T; Kaji H; Lima RA
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.
    Knowlton S; Yenilmez B; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):685-688. PubMed ID: 27424152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprintable tough hydrogels for tissue engineering applications.
    Dorishetty P; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2020 Jul; 281():102163. PubMed ID: 32388202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in tissue engineering of vasculature through three-dimensional bioprinting.
    Zhu J; Wang Y; Zhong L; Pan F; Wang J
    Dev Dyn; 2021 Dec; 250(12):1717-1738. PubMed ID: 34115420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127.
    Shamma RN; Sayed RH; Madry H; El Sayed NS; Cucchiarini M
    Tissue Eng Part B Rev; 2022 Apr; 28(2):451-463. PubMed ID: 33820451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review.
    Nie J; Gao Q; Fu J; He Y
    Adv Healthc Mater; 2020 Apr; 9(7):e1901773. PubMed ID: 32125787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting on Organ-on-Chip: Development and Applications.
    Chliara MA; Elezoglou S; Zergioti I
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (Bio)printing in Personalized Medicine-Opportunities and Potential Benefits.
    Shopova D; Yaneva A; Bakova D; Mihaylova A; Kasnakova P; Hristozova M; Sbirkov Y; Sarafian V; Semerdzhieva M
    Bioengineering (Basel); 2023 Feb; 10(3):. PubMed ID: 36978678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinting of tissues and organs for regenerative medicine.
    Vijayavenkataraman S; Yan WC; Lu WF; Wang CH; Fuh JYH
    Adv Drug Deliv Rev; 2018 Jul; 132():296-332. PubMed ID: 29990578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip high-definition bioprinting of microvascular structures.
    Dobos A; Gantner F; Markovic M; Van Hoorick J; Tytgat L; Van Vlierberghe S; Ovsianikov A
    Biofabrication; 2021 Feb; 13(1):015016. PubMed ID: 33586666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D cell aggregate printing technology and its applications.
    Jeon S; Lee SH; Ahmed SB; Han J; Heo SJ; Kang HW
    Essays Biochem; 2021 Aug; 65(3):467-480. PubMed ID: 34223609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges.
    Gaihre B; Potes MA; Serdiuk V; Tilton M; Liu X; Lu L
    Biomaterials; 2022 May; 284():121507. PubMed ID: 35421800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering bioinks for 3D bioprinting.
    Decante G; Costa JB; Silva-Correia J; Collins MN; Reis RL; Oliveira JM
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Bioprinting: from Benches to Translational Applications.
    Heinrich MA; Liu W; Jimenez A; Yang J; Akpek A; Liu X; Pi Q; Mu X; Hu N; Schiffelers RM; Prakash J; Xie J; Zhang YS
    Small; 2019 Jun; 15(23):e1805510. PubMed ID: 31033203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Patent Landscape and Innovation of Hydrogel-based Bioinks Used for 3D Bioprinting.
    Fatimi A
    Recent Adv Drug Deliv Formul; 2022; 16(2):145-163. PubMed ID: 35507801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.