These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34068812)

  • 1. Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics.
    Wei W; Zou X; Ji X; Zhou R; Zhao K; Wang Y
    Membranes (Basel); 2021 May; 11(5):. PubMed ID: 34068812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Simulations of Calcium Sulphate Scaling in Full-Scale Brackish Water Reverse Osmosis Pressure Vessels Using Computational Fluid Dynamics.
    Mao W; Zou X; Guo Z; Sun S; Ma S; Lyv S; Xiao Y; Ji X; Wang Y
    Membranes (Basel); 2021 Jul; 11(7):. PubMed ID: 34357171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of CFD Modelling and Performance Metrics for Osmotic Membrane Processes.
    Toh KY; Liang YY; Lau WJ; Fimbres Weihs GA
    Membranes (Basel); 2020 Oct; 10(10):. PubMed ID: 33076290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes.
    Bucs SS; Linares RV; Marston JO; Radu AI; Vrouwenvelder JS; Picioreanu C
    Water Res; 2015 Dec; 87():299-310. PubMed ID: 26433778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlations for Concentration Polarization and Pressure Drop in Spacer-Filled RO Membrane Modules Based on CFD Simulations.
    Gu B; Adjiman CS; Xu XY
    Membranes (Basel); 2021 May; 11(5):. PubMed ID: 34062924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of non-uniform filament feed spacers characteristics on the hydraulic and anti-fouling performances in the spacer-filled membrane channels: Experiment and numerical simulation.
    Lin WC; Shao RP; Wang XM; Huang X
    Water Res; 2020 Oct; 185():116251. PubMed ID: 32771564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems.
    Siddiqui A; Farhat N; Bucs SS; Linares RV; Picioreanu C; Kruithof JC; van Loosdrecht MC; Kidwell J; Vrouwenvelder JS
    Water Res; 2016 Mar; 91():55-67. PubMed ID: 26773488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient.
    Dreszer C; Flemming HC; Zwijnenburg A; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Mar; 50():200-11. PubMed ID: 24374131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spacer geometry and particle deposition in spiral wound membrane feed channels.
    Radu AI; van Steen MSH; Vrouwenvelder JS; van Loosdrecht MCM; Picioreanu C
    Water Res; 2014 Nov; 64():160-176. PubMed ID: 25055226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem.
    Vrouwenvelder JS; Graf von der Schulenburg DA; Kruithof JC; Johns ML; van Loosdrecht MC
    Water Res; 2009 Feb; 43(3):583-94. PubMed ID: 19058830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis of permeate flux in reverse osmosis by varying strand geometry.
    Shoukat G; Idrees H; Sajid M; Ali S; Ayaz Y; Nawaz R; Ansari AR
    Sci Rep; 2022 Oct; 12(1):16636. PubMed ID: 36198707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Forward Osmosis Operating Pressure on Deformation, Efficiency and Concentration Polarisation with Novel Links to CFD.
    Charlton AJ; Blandin G; Leslie G; Le-Clech P
    Membranes (Basel); 2021 Feb; 11(3):. PubMed ID: 33652896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Industrial-Scale Fabrication of Next-Generation Low-Energy Membranes for Desalination.
    Goh LM; Thong Z; Li WP; Ooi ST; Esa F; Ng KS; Dhalla A; Gudipati C
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Magnetic Resonance Measurements of Fouling in Operating Spiral Wound Reverse Osmosis Membrane Modules.
    Bristow NW; Vogt SJ; Bucs SS; Vrouwenvelder JS; Johns ML; Fridjonsson EO
    Water Res; 2021 May; 196():117006. PubMed ID: 33744656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction.
    Vrouwenvelder JS; Hinrichs C; Van der Meer WG; Van Loosdrecht MC; Kruithof JC
    Biofouling; 2009; 25(6):543-55. PubMed ID: 19437193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuum membrane distillation of seawater reverse osmosis brines.
    Mericq JP; Laborie S; Cabassud C
    Water Res; 2010 Oct; 44(18):5260-73. PubMed ID: 20659753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement.
    Lin W; Zhang Y; Li D; Wang XM; Huang X
    Water Res; 2021 Jun; 198():117146. PubMed ID: 33945947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass Transport in Osmotically Driven Membrane Processes.
    Xie P; Cath TY; Ladner DA
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.