These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34069101)

  • 1. Application of Computational Method in Designing a Unit Cell of Bone Tissue Engineering Scaffold: A Review.
    Mustafa NS; Akhmal NH; Izman S; Ab Talib MH; Shaiful AIM; Omar MNB; Yahaya NZ; Illias S
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34069101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.
    Castro APG; Ruben RB; Gonçalves SB; Pinheiro J; Guedes JM; Fernandes PR
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):567-573. PubMed ID: 30773050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review.
    Chen H; Han Q; Wang C; Liu Y; Chen B; Wang J
    Front Bioeng Biotechnol; 2020; 8():609. PubMed ID: 32626698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally Graded Scaffolds with Programmable Pore Size Distribution Based on Triply Periodic Minimal Surface Fabricated by Selective Laser Melting.
    Zhou X; Jin Y; Du J
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33182421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure.
    Lu Y; Cheng L; Yang Z; Li J; Zhu H
    PLoS One; 2020; 15(9):e0238471. PubMed ID: 32870933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds.
    Lu Y; Zhao W; Cui Z; Zhu H; Wu C
    J Mech Behav Biomed Mater; 2019 Nov; 99():56-65. PubMed ID: 31344523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability versus Design in TPMS Scaffolds.
    Castro APG; Pires T; Santos JE; Gouveia BP; Fernandes PR
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.
    Yoo D
    Med Eng Phys; 2012 Jul; 34(6):762-76. PubMed ID: 22721938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication.
    Zhang S; Vijayavenkataraman S; Lu WF; Fuh JYH
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1329-1351. PubMed ID: 30300964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational method and program for generating a porous scaffold based on implicit surfaces.
    Iamsamang J; Naiyanetr P
    Comput Methods Programs Biomed; 2021 Jun; 205():106088. PubMed ID: 33906014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological and mechanical property analysis for designed heterogeneous porous scaffolds based on the refined TPMS.
    Ma S; Song K; Lan J; Ma L
    J Mech Behav Biomed Mater; 2020 Jul; 107():103727. PubMed ID: 32276186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions.
    Yoo D
    Med Eng Phys; 2012 Jun; 34(5):625-39. PubMed ID: 22487098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling, Assessment, and Design of Porous Cells Based on Schwartz Primitive Surface for Bone Scaffolds.
    Ambu R; Morabito AE
    ScientificWorldJournal; 2019; 2019():7060847. PubMed ID: 31346324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous scaffold design using the distance field and triply periodic minimal surface models.
    Yoo DJ
    Biomaterials; 2011 Nov; 32(31):7741-54. PubMed ID: 21798592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering.
    Cheah CM; Chua CK; Leong KF; Cheong CH; Naing MW
    Tissue Eng; 2004; 10(3-4):595-610. PubMed ID: 15165476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical characterization of 3D printed multi-morphology porous Ti6Al4V scaffolds based on triply periodic minimal surface architectures.
    Zhu LY; Li L; Shi JP; Li ZA; Yang JQ
    Am J Transl Res; 2018; 10(11):3443-3454. PubMed ID: 30662598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges in computational fluid dynamics applications for bone tissue engineering.
    Pires T; Dunlop JWC; Fernandes PR; Castro APG
    Proc Math Phys Eng Sci; 2022 Jan; 478(2257):20210607. PubMed ID: 35153613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of unit configurations and parameters on the properties of Ti-6Al-4V unit-stacked scaffolds: A trade-off between mechanical and permeable performance.
    Li Z; Chen Z; Chen X; Zhao R
    J Mech Behav Biomed Mater; 2021 Apr; 116():104332. PubMed ID: 33578077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic Boundary-Based Scaffold Design for Tissue Engineering Applications.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2021; 2147():3-18. PubMed ID: 32840806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.