These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 34069192)
1. Torque Curve Optimization of Ankle Push-Off in Walking Bipedal Robots Using Genetic Algorithm. Ji Q; Qian Z; Ren L; Ren L Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069192 [TBL] [Abstract][Full Text] [Related]
2. Simulation Analysis of Impulsive Ankle Push-Off on the Walking Speed of a Planar Biped Robot. Ji Q; Qian Z; Ren L; Ren L Front Bioeng Biotechnol; 2020; 8():621560. PubMed ID: 33511106 [TBL] [Abstract][Full Text] [Related]
3. A unified perspective on ankle push-off in human walking. Zelik KE; Adamczyk PG J Exp Biol; 2016 Dec; 219(Pt 23):3676-3683. PubMed ID: 27903626 [TBL] [Abstract][Full Text] [Related]
4. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking. Huang TW; Shorter KA; Adamczyk PG; Kuo AD J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330 [TBL] [Abstract][Full Text] [Related]
5. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
6. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking. Malcolm P; Quesada RE; Caputo JM; Collins SH J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201 [TBL] [Abstract][Full Text] [Related]
7. Decline in gait propulsion in older adults over age decades. Sloot LH; Malheiros S; Truijen S; Saeys W; Mombaur K; Hallemans A; van Criekinge T Gait Posture; 2021 Oct; 90():475-482. PubMed ID: 34619614 [TBL] [Abstract][Full Text] [Related]
8. Impulsive ankle push-off powers leg swing in human walking. Lipfert SW; Günther M; Renjewski D; Seyfarth A J Exp Biol; 2014 Apr; 217(Pt 8):1218-28. PubMed ID: 24363410 [TBL] [Abstract][Full Text] [Related]
9. The effect of stride length on lower extremity joint kinetics at various gait speeds. McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565 [TBL] [Abstract][Full Text] [Related]
10. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion. Miller Buffinton C; Buffinton EM; Bieryla KA; Pratt JE J Biomech Eng; 2016 Mar; 138(3):4032468. PubMed ID: 26769330 [TBL] [Abstract][Full Text] [Related]
11. Effects of Horizontal Impeding Force Gait Training on Older Adult Push-Off Intensity. Conway KA; Crudup KL; Lewek MD; Franz JR Med Sci Sports Exerc; 2021 Mar; 53(3):574-580. PubMed ID: 33560768 [TBL] [Abstract][Full Text] [Related]
12. Does ankle push-off correct for errors in anterior-posterior foot placement relative to center-of-mass states? Jin J; van Dieën JH; Kistemaker D; Daffertshofer A; Bruijn SM PeerJ; 2023; 11():e15375. PubMed ID: 37273538 [TBL] [Abstract][Full Text] [Related]
13. Analysis and control of biped robot with variable stiffness ankle joints. Lin Z; Zang X; Zhang X; Liu Y; Heng S Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178 [TBL] [Abstract][Full Text] [Related]
14. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking. Caputo JM; Collins SH Sci Rep; 2014 Dec; 4():7213. PubMed ID: 25467389 [TBL] [Abstract][Full Text] [Related]
15. Speed-Related Energy Flow and Joint Function Change During Human Walking. Hu Z; Ren L; Hu D; Gao Y; Wei G; Qian Z; Wang K Front Bioeng Biotechnol; 2021; 9():666428. PubMed ID: 34136472 [TBL] [Abstract][Full Text] [Related]
16. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network. Lee T; Kim I; Lee SH Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587 [TBL] [Abstract][Full Text] [Related]
17. Robots in human biomechanics--a study on ankle push-off in walking. Renjewski D; Seyfarth A Bioinspir Biomim; 2012 Sep; 7(3):036005. PubMed ID: 22510333 [TBL] [Abstract][Full Text] [Related]
18. Toward goal-oriented robotic gait training: The effect of gait speed and stride length on lower extremity joint torques. McGrath RL; Pires-Fernandes M; Knarr B; Higginson JS; Sergi F IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():270-275. PubMed ID: 28813830 [TBL] [Abstract][Full Text] [Related]
19. Preliminary effectiveness of a sequential exercise intervention on gait function in ambulant patients with multiple sclerosis - A pilot study. Heine M; Richards R; Geurtz B; Los F; Rietberg M; Harlaar J; Gerrits K; Beckerman H; de Groot V Clin Biomech (Bristol); 2019 Feb; 62():1-6. PubMed ID: 30614444 [TBL] [Abstract][Full Text] [Related]
20. The relationship between energy cost of walking, ankle push-off and walking speed in persons with multiple sclerosis. Visch L; Oudenhoven LM; Timmermans ST; Beckerman H; Rietberg MB; de Groot V; van der Krogt MM Gait Posture; 2022 Oct; 98():160-166. PubMed ID: 36126536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]