BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 34069206)

  • 21. Emergence, Transmission, and Potential Therapeutic Targets for the COVID-19 Pandemic Associated with the SARS-CoV-2.
    Patil AM; Göthert JR; Khairnar V
    Cell Physiol Biochem; 2020 Aug; 54(4):767-790. PubMed ID: 32830930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promising role of defensins peptides as therapeutics to combat against viral infection.
    Solanki SS; Singh P; Kashyap P; Sansi MS; Ali SA
    Microb Pathog; 2021 Jun; 155():104930. PubMed ID: 33933603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iPSC screening for drug repurposing identifies anti-RNA virus agents modulating host cell susceptibility.
    Imamura K; Sakurai Y; Enami T; Shibukawa R; Nishi Y; Ohta A; Shu T; Kawaguchi J; Okada S; Hoenen T; Yasuda J; Inoue H
    FEBS Open Bio; 2021 May; 11(5):1452-1464. PubMed ID: 33822489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Review on Remdesivir: A Broad-spectrum Antiviral Molecule for Possible COVID-19 Treatment.
    Khazir J; Maqbool T; Mir BA
    Mini Rev Med Chem; 2021; 21(17):2530-2543. PubMed ID: 33596800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small-molecule Antiviral Agents in Ongoing Clinical Trials for COVID-19.
    Apaydın ÇB; Çınar G; Cihan-Üstündağ G
    Curr Drug Targets; 2021; 22(17):1986-2005. PubMed ID: 33588727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anurans against SARS-CoV-2: A review of the potential antiviral action of anurans cutaneous peptides.
    de Amaral M; Ienes-Lima J
    Virus Res; 2022 Jul; 315():198769. PubMed ID: 35430319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy.
    Goyal B; Goyal D
    ACS Comb Sci; 2020 Jun; 22(6):297-305. PubMed ID: 32402186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Valinomycin as a potential antiviral agent against coronaviruses: A review.
    Zhang D; Ma Z; Chen H; Lu Y; Chen X
    Biomed J; 2020 Oct; 43(5):414-423. PubMed ID: 33012699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding Individual SARS-CoV-2 Proteins for Targeted Drug Development against COVID-19.
    van de Leemput J; Han Z
    Mol Cell Biol; 2021 Aug; 41(9):e0018521. PubMed ID: 34124934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repurposing fusion inhibitor peptide against SARS-CoV-2.
    Efaz FM; Islam S; Talukder SA; Akter S; Tashrif MZ; Ali MA; Sufian MA; Parves MR; Islam MJ; Halim MA
    J Comput Chem; 2021 Dec; 42(32):2283-2293. PubMed ID: 34591335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19.
    Shah JN; Guo GQ; Krishnan A; Ramesh M; Katari NK; Shahbaaz M; Abdellattif MH; Singh SK; Dua K
    Therapie; 2022; 77(3):319-328. PubMed ID: 34689960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. COVID-19: Discovery, diagnostics and drug development.
    Asselah T; Durantel D; Pasmant E; Lau G; Schinazi RF
    J Hepatol; 2021 Jan; 74(1):168-184. PubMed ID: 33038433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stopping pandemics before they start: Lessons learned from SARS-CoV-2.
    Edwards AM; Baric RS; Saphire EO; Ulmer JB
    Science; 2022 Mar; 375(6585):1133-1139. PubMed ID: 35271333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Review on Screening Models for Potential Therapeutic Candidates and Targets Against SARS-CoV-2.
    Das M; Kumar M; Jha A; Madhukiran DR; Bharti K; Mondal S; Mishra B
    Curr Drug Targets; 2021; 22(11):1232-1254. PubMed ID: 33371846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug Discovery of Small Molecules for the Treatment of COVID-19: A Review on Clinical Studies.
    Goel B; Bhardwaj N; Tripathi N; Jain SK
    Mini Rev Med Chem; 2021; 21(12):1431-1456. PubMed ID: 33371848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential of antiviral peptide-based SARS-CoV-2 inactivators to combat COVID-19.
    Gurung AB; Ali MA; Lee J; El-Zaidy M; Aljowaie RM; Almutairi SM
    PLoS One; 2022; 17(6):e0268919. PubMed ID: 35657783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19.
    Chérifi F; Laraba-Djebari F
    Protein J; 2021 Dec; 40(6):799-841. PubMed ID: 34499333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of Three Residues Peptides against SARS-CoV-2 Infection.
    Zannella C; Chianese A; Greco G; Santella B; Squillaci G; Monti A; Doti N; Sanna G; Manzin A; Morana A; De Filippis A; D'Angelo G; Palmieri F; Franci G; Galdiero M
    Viruses; 2022 Sep; 14(10):. PubMed ID: 36298659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IMU-838, a Developmental DHODH Inhibitor in Phase II for Autoimmune Disease, Shows Anti-SARS-CoV-2 and Broad-Spectrum Antiviral Efficacy In Vitro.
    Hahn F; Wangen C; Häge S; Peter AS; Dobler G; Hurst B; Julander J; Fuchs J; Ruzsics Z; Überla K; Jäck HM; Ptak R; Muehler A; Gröppel M; Vitt D; Peelen E; Kohlhof H; Marschall M
    Viruses; 2020 Dec; 12(12):. PubMed ID: 33291455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antiviral efficacy of favipiravir against Zika and SARS-CoV-2 viruses in non-human primates.
    Marlin R; Desjardins D; Contreras V; Lingas G; Solas C; Roques P; Naninck T; Pascal Q; Behillil S; Maisonnasse P; Lemaitre J; Kahlaoui N; Delache B; Pizzorno A; Nougairede A; Ludot C; Terrier O; Dereuddre-Bosquet N; Relouzat F; Chapon C; Ho Tsong Fang R; van der Werf S; Rosa Calatrava M; Malvy D; de Lamballerie X; Guedj J; Le Grand R
    Nat Commun; 2022 Aug; 13(1):5108. PubMed ID: 36042198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.