These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34069317)

  • 1. Creep and Recovery Behavior of Continuous Fiber-Reinforced 3DP Composites.
    Al Rashid A; Koҫ M
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34069317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure Prediction in 3D Printed Kevlar/Glass Fiber-Reinforced Nylon Structures with a Hole and Different Fiber Orientations.
    Albadrani MA
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36298040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creep behavior of bagasse fiber reinforced polymer composites.
    Xu Y; Wu Q; Lei Y; Yao F
    Bioresour Technol; 2010 May; 101(9):3280-6. PubMed ID: 20064712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-Based Resin Reinforced with Flax Fiber as Thermorheologically Complex Materials.
    Amiri A; Yu A; Webster D; Ulven C
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Brief Review on Additive Manufacturing of Polymeric Composites and Nanocomposites.
    Monfared V; Bakhsheshi-Rad HR; Ramakrishna S; Razzaghi M; Berto F
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34208605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Static, Creep, and Fatigue Tensile Behavior of Basalt Fiber/Polypropylene Composite Rods for Passive Concrete Reinforcement.
    Tanks J; Naito K; Ueda H
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites.
    Karvanis K; Rusnáková S; Krejčí O; Žaludek M
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32785020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexure Behaviors of ABS-Based Composites Containing Carbon and Kevlar Fibers by Material Extrusion 3D Printing.
    Wang K; Li S; Rao Y; Wu Y; Peng Y; Yao S; Zhang H; Ahzi S
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31766301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the Statistical Nature of Fiber Strength on the Predictability of Tensile Properties of Polymer Composites Reinforced with Bamboo Fibers: Comparison of Linear- and Power-Law Weibull Models.
    Li X; Wang F
    Polymers (Basel); 2016 Jan; 8(1):. PubMed ID: 30979119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review.
    Suriani MJ; Rapi HZ; Ilyas RA; Petrů M; Sapuan SM
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33919480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creep-Induced Screw Preload Loss of Carbon-Fiber Sheet Molding Compound at Elevated Temperature.
    Finck D; Seidel C; Hausmann J; Rief T
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31683917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Micro-Macro Interlaminar Properties of Continuous Carbon Fiber-Reinforced Polyphenylene Sulfide Laminates Made by Thermocompression to Simulate the Consolidation Process in FDM.
    Hu J; Mubarak S; Li K; Huang X; Huang W; Zhuo D; Li Y; Wu L; Wang J
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Properties of Short Fiber-Reinforced Geopolymers Made by Casted and 3D Printing Methods: A Comparative Study.
    Korniejenko K; Łach M; Chou SY; Lin WT; Cheng A; Hebdowska-Krupa M; Gądek S; Mikuła J
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications.
    Rajak DK; Pagar DD; Menezes PL; Linul E
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31614875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creep and dynamic viscoelastic behavior of endodontic fiber-reinforced composite posts.
    Papadogiannis D; Lakes RS; Palaghias G; Papadogiannis Y
    J Prosthodont Res; 2009 Oct; 53(4):185-92. PubMed ID: 19699701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep and Recovery Behaviour of Polyolefin-Rubber Nanocomposites Developed for Additive Manufacturing.
    Daver F; Kajtaz M; Brandt M; Shanks RA
    Polymers (Basel); 2016 Dec; 8(12):. PubMed ID: 30974712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Potential of Alternate Inorganic Fibers for Automotive Composites.
    Shoaib M; Jamshaid H; Alshareef M; Alharthi FA; Ali M; Waqas M
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Continuous Fiber-Reinforced Additive Manufacturing Processing Based on PET Fiber and PLA.
    Yao Y; Li M; Lackner M; Herfried L
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32650417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creep Behavior of Poly(lactic acid) Based Biocomposites.
    Morreale M; Mistretta MC; Fiore V
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact Properties and Water Uptake Behavior of Old Newspaper Recycled Fibers-Reinforced Polypropylene Composites.
    Hernández-Díaz D; Villar-Ribera R; Espinach FX; Julián F; Hernández-Abad V; Delgado-Aguilar M
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32121197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.