These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34069414)

  • 1. Inertial Sensor-Based Step Length Estimation Model by Means of Principal Component Analysis.
    Vezočnik M; Kamnik R; Juric MB
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Inertial Sensor-Based Step Length Estimation Model.
    Vezočnik M; Juric MB
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders.
    Wang Q; Ye L; Luo H; Men A; Zhao F; Huang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Step-Detection and Adaptive Step-Length Estimation for Pedestrian Dead-Reckoning at Various Walking Speeds Using a Smartphone.
    Ho NH; Truong PH; Jeong GM
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Context-Aware Smartphone-Based 3D Indoor Positioning Using Pedestrian Dead Reckoning.
    Khalili B; Ali Abbaspour R; Chehreghan A; Vesali N
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds.
    Huang C; Zhang F; Xu Z; Wei J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Pedestrian Dead Reckoning Based on MEMS-IMU for Smartphones.
    Kuang J; Niu X; Chen X
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29724003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Step Size and Lower Limb Segment Orientation from Multiple Low-Cost Wearable Inertial/Magnetic Sensors for Pedestrian Navigation.
    Tjhai C; O'Keefe K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smartphone-Based Pedestrian Dead Reckoning for 3D Indoor Positioning.
    Geng J; Xia L; Xia J; Li Q; Zhu H; Cai Y
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RadarPDR: Radar-Assisted Indoor Pedestrian Dead Reckoning.
    He J; Xiang W; Zhang Q; Wang B
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Pedestrian Positioning System to Smartphones and Smartwatches.
    Correa A; Munoz Diaz E; Bousdar Ahmed D; Morell A; Lopez Vicario J
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27845715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vector graph assisted pedestrian dead reckoning using an unconstrained smartphone.
    Qian J; Pei L; Ma J; Ying R; Liu P
    Sensors (Basel); 2015 Mar; 15(3):5032-57. PubMed ID: 25738763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Stride-Length Estimation Based on LT-StrideNet for Pedestrian Dead Reckoning Using a Shank-Mounted Sensor.
    Li Y; Zeng G; Wang L; Tan K
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Enhanced Pedestrian Visual-Inertial SLAM System Aided with Vanishing Point in Indoor Environments.
    Chai W; Li C; Zhang M; Sun Z; Yuan H; Lin F; Li Q
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Pedestrian Stride Estimation for Localization: From Multi-Gait Perspective.
    Huang C; Zhang F; Xu Z; Wei J
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on Pedestrian Indoor Positioning Based on Two-Step Robust Adaptive Cubature Kalman Filter with Smartphone MEMS Sensors.
    Geng J; Yu X; Wu C; Zhang G
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical and Accurate Indoor Localization System Using Deep Learning.
    Yoon J; Kim S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone-Based Traveled Distance Estimation Using Individual Walking Patterns for Indoor Localization.
    Kang J; Lee J; Eom DS
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30231534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Step Length Is a More Reliable Measurement Than Walking Speed for Pedestrian Dead-Reckoning.
    Elyasi F; Manduchi R
    Int Conf Indoor Position Indoor Navig; 2023 Sep; 2023():. PubMed ID: 38152683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System.
    Fan Q; Zhang H; Pan P; Zhuang X; Jia J; Zhang P; Zhao Z; Zhu G; Tang Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.