These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34069430)

  • 1. Toward an Estimation of the Optical Feedback Factor
    Bernal OD; Zabit U; Jayat F; Bosch T
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fringe Detection and Displacement Sensing for Variable Optical Feedback-Based Self-Mixing Interferometry by Using Deep Neural Networks.
    Siddiqui AA; Zabit U; Bernal OD
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint estimation of self-mixing interferometry parameters and displacement reconstruction based on local normalization.
    Kim JH; Kim CH; Yun TH; Hong HS; Ho KM; Kim KH
    Appl Opt; 2021 Mar; 60(8):2282-2287. PubMed ID: 33690327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the measurement performance for a self-mixing interferometry-based displacement sensing system.
    Fan Y; Yu Y; Xi J; Chicharo JF
    Appl Opt; 2011 Sep; 50(26):5064-72. PubMed ID: 21946986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of vibration parameters from optical feedback interferometry signals using wavelets.
    Jha A; Azcona FJ; Yañez C; Royo S
    Appl Opt; 2015 Dec; 54(34):10106-13. PubMed ID: 26836667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration reconstruction and optical feedback parameter evaluation based on the direction discrimination in self-mixing interferometry.
    Ri CY; Choe JH; Ri HR; Pak CM; Ri KR; O JM
    Appl Opt; 2021 May; 60(13):3801-3807. PubMed ID: 33983315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast estimation method of feedback factor based on the derivative of the self-mixing signal.
    Kim JH; Kim CH; Kim DK; Ri HS; Jo GH
    Appl Opt; 2020 Aug; 59(22):6689-6693. PubMed ID: 32749373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental demonstration of the impact of the fringe shape in sub-lambda/2 sensing with optical feedback interferometry.
    Knudsen E; Perchoux J; Mazoyer T; Imas JJ; Veng M; Jayat F; Tronche C; Bosch T
    Appl Opt; 2021 Jan; 60(1):119-124. PubMed ID: 33362079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of laser self-mixing interferometric signal under moderate feedback.
    Bernal OD; Zabit U; Bosch T
    Appl Opt; 2014 Feb; 53(4):702-8. PubMed ID: 24514187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation on the effect of extra-feedback target position on the fringe visibility in a dual optical feedback interferometry system.
    Jiang Y; Liu B; Yang Y; Ruan Y; Yu Y
    Opt Express; 2024 Mar; 32(6):10317-10328. PubMed ID: 38571247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation method for the optical feedback factor and linewidth enhancement factor using phase discontinuities in self-mixing interferometry signals.
    Ri CY; Kim CS; Ri GC; Kang JC; Pak CM; O JM
    Appl Opt; 2020 Jan; 59(3):687-693. PubMed ID: 32225204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Betterment of a displacement retrieval method based on data fitting in a near-half-fringe zone.
    Kim IH; Kim CH; Sin TM; Ri KH
    Appl Opt; 2023 Nov; 62(33):8939-8944. PubMed ID: 38038041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanometric sensing with laser feedback interferometry.
    Choi D; Wishon MJ; Viktorov EA; Citrin DS; Locquet A
    Opt Lett; 2019 Feb; 44(4):903-906. PubMed ID: 30768016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speckle-insensitive fringe detection method based on Hilbert transform for self-mixing interferometry.
    Arriaga AL; Bony F; Bosch T
    Appl Opt; 2014 Oct; 53(30):6954-62. PubMed ID: 25402781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods and Limits for Micro Scale Blood Vessel Flow Imaging in Scattering Media by Optical Feedback Interferometry: Application to Human Skin.
    Quotb A; Atashkhooei R; Magaletti S; Jayat F; Tronche C; Goechnahts J; Perchoux J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normalization-free displacement reconstruction method based on fringe scaling.
    Hong HS; Kim CH; Kim JH; Kim CH; Ri CR
    Appl Opt; 2022 Mar; 61(7):1600-1605. PubMed ID: 35297833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser feedback interferometry in multi-mode terahertz quantum cascade lasers.
    Qi X; Agnew G; Taimre T; Han S; Lim YL; Bertling K; Demić A; Dean P; Indjin D; Rakić AD
    Opt Express; 2020 May; 28(10):14246-14262. PubMed ID: 32403467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete fringe phase unwrapping algorithm based on Kalman motion estimation for high-speed I/Q-interferometry.
    He Z; Cui J; Tan J; Bian X; Jiang W
    Opt Express; 2018 Apr; 26(7):8699-8708. PubMed ID: 29715834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring parameters of laser self-mixing interferometry sensor based on back propagation neural network.
    An L; Liu B
    Opt Express; 2022 May; 30(11):19134-19144. PubMed ID: 36221698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications.
    Perchoux J; Quotb A; Atashkhooei R; Azcona FJ; Ramírez-Miquet EE; Bernal O; Jha A; Luna-Arriaga A; Yanez C; Caum J; Bosch T; Royo S
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.