These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 3406945)

  • 41. Calcium-independent release of acetylcholine from electric organ synaptosomes and its changes by depolarization and cholinergic drugs.
    Dolezal V; Diebler MF; Lazereg S; Israël M; Tucek S
    J Neurochem; 1988 Feb; 50(2):406-13. PubMed ID: 2447238
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin.
    Habermann E; Dreyer F; Bigalke H
    Naunyn Schmiedebergs Arch Pharmacol; 1980 Feb; 311(1):33-40. PubMed ID: 6245375
    [No Abstract]   [Full Text] [Related]  

  • 43. Tetanus toxin and botulinum A toxin inhibit release and uptake of various transmitters, as studied with particulate preparations from rat brain and spinal cord.
    Bigalke H; Heller I; Bizzini B; Habermann E
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Jun; 316(3):244-51. PubMed ID: 6114440
    [No Abstract]   [Full Text] [Related]  

  • 44. Ca(2+)-dependent changes of acetylcholine release and IP3 mass in Torpedo cholinergic synaptosomes.
    Carrasco MA; Gaudry-Talarmain YM; Molgo J
    Neurochem Int; 1996 Dec; 29(6):637-43. PubMed ID: 9113131
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Mechanism of action and therapeutic uses of botulinum and tetanus neurotoxins].
    Popoff MR; Marvaud JC; Raffestin S
    Ann Pharm Fr; 2001 May; 59(3):176-90. PubMed ID: 11427819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium-dependent and -independent acetylcholine release from electric organ synaptosomes by pardaxin: evidence of a biphasic action of an excitatory neurotoxin.
    Arribas M; Blasi J; Lazarovici P; Marsal J
    J Neurochem; 1993 Feb; 60(2):552-8. PubMed ID: 8419536
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition of evoked acetylcholine release: two different mechanisms in the Torpedo electric organ.
    Muller D; Loctin F; Dunant Y
    Eur J Pharmacol; 1987 Jan; 133(2):225-34. PubMed ID: 2434349
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Omega-conotoxin differentially blocks acetylcholine and adenosine triphosphate releases from Torpedo synaptosomes.
    Fariñas I; Solsona C; Marsal J
    Neuroscience; 1992; 47(3):641-8. PubMed ID: 1584411
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of cetiedil on acetylcholine release and intramembrane particles in cholinergic synaptosomes.
    Israel M; Manaranche R; Morot Gaudry-Talarmain Y; Lesbats B; Gulik-Krzywicki T; Dedieu JC
    Biol Cell; 1987; 61(1-2):59-63. PubMed ID: 2965936
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of synaptosomal choline uptake by tetanus and botulinum A toxin. Partial dissociation of fixation and effect of tetanus toxin.
    Habermann E; Bigalke H; Heller I
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Apr; 316(2):135-42. PubMed ID: 7242700
    [No Abstract]   [Full Text] [Related]  

  • 51. Pulsatile release of acetylcholine by nerve terminals (synaptosomes) isolated from Torpedo electric organ.
    Girod R; Eder-Colli L; Medilanski J; Dunant Y; Tabti N; Poo MM
    J Physiol; 1992 May; 450():325-40. PubMed ID: 1432711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Botulinum toxin and tetanus toxin recognize similar membrane determinants.
    Simpson LL
    Brain Res; 1984 Jul; 305(1):177-80. PubMed ID: 6331597
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural changes at pure cholinergic synaptosomes during the transmitter release induced by A-23187 in Torpedo marmorata. A freeze-fracture study.
    Egea G; Esquerda JE; Calvet R; Solsona C; Marsal J
    Cell Tissue Res; 1987 Apr; 248(1):207-14. PubMed ID: 3105889
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition by tetanus and botulinum A toxin of the release of [3H]noradrenaline and [3H]GABA from rat brain homogenate.
    Habermann E
    Experientia; 1988 Mar; 44(3):224-6. PubMed ID: 3350134
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence for different exocytosis pathways in dendritic and terminal dopamine release in vivo.
    Bergquist F; Niazi HS; Nissbrandt H
    Brain Res; 2002 Sep; 950(1-2):245-53. PubMed ID: 12231250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Opiates inhibit acetylcholine release from Torpedo nerve terminals by blocking Ca2+ influx.
    Michaelson DM; McDowall G; Sarne Y
    J Neurochem; 1984 Sep; 43(3):614-8. PubMed ID: 6431053
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochemical evidence that acetylcholine release from cholinergic nerve terminals is mostly vesicular.
    Michaelson DM; Burstein M
    FEBS Lett; 1985 Sep; 188(2):389-93. PubMed ID: 4029394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Incorporation of acetate into acetylcholine, acetylcarnitine, and amino acids in the Torpedo electric organ.
    Corthay J; Dunant Y; Eder L; Loctin F
    J Neurochem; 1985 Dec; 45(6):1809-19. PubMed ID: 4056793
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action.
    McMahon HT; Foran P; Dolly JO; Verhage M; Wiegant VM; Nicholls DG
    J Biol Chem; 1992 Oct; 267(30):21338-43. PubMed ID: 1356988
    [TBL] [Abstract][Full Text] [Related]  

  • 60. alpha-latrotoxin is a potent inducer of neurotransmitter release in Torpedo electric organ--functional and morphological characterization.
    Linial M; Ilouz N; Feinstein N
    Eur J Neurosci; 1995 Apr; 7(4):742-52. PubMed ID: 7620623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.