BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34069970)

  • 1. δ-Catenin Participates in EGF/AKT/p21
    Shen Y; Lee HJ; Zhou R; Kim H; Chen G; Cho YC; Kim K
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-Src-mediated phosphorylation of δ-catenin increases its protein stability and the ability of inducing nuclear distribution of β-catenin.
    He Y; Kim H; Ryu T; Lee KY; Choi WS; Kim KM; Zheng M; Joh Y; Lee JH; Kwon DD; Lu Q; Kim K
    Biochim Biophys Acta; 2014 Apr; 1843(4):758-68. PubMed ID: 24412473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp27 regulates EGF/β-catenin mediated epithelial to mesenchymal transition in prostate cancer.
    Cordonnier T; Bishop JL; Shiota M; Nip KM; Thaper D; Vahid S; Heroux D; Gleave M; Zoubeidi A
    Int J Cancer; 2015 Mar; 136(6):E496-507. PubMed ID: 25130271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S100A16 promotes cell proliferation and metastasis via AKT and ERK cell signaling pathways in human prostate cancer.
    Zhu W; Xue Y; Liang C; Zhang R; Zhang Z; Li H; Su D; Liang X; Zhang Y; Huang Q; Liu M; Li L; Li D; Zhao AZ; Liu Y
    Tumour Biol; 2016 Sep; 37(9):12241-12250. PubMed ID: 27240591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of EGFR to δ-catenin leads to δ-catenin phosphorylation and enhances EGFR signaling.
    He Y; Ryu T; Shrestha N; Yuan T; Kim H; Shrestha H; Cho YC; Seo YW; Song WK; Kim K
    Sci Rep; 2016 Feb; 6():21207. PubMed ID: 26883159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of zinc deficiency on Akt-Mdm2-p53 and Akt-p21 signaling axes in normal and malignant human prostate cells.
    Han CT; Schoene NW; Lei KY
    Am J Physiol Cell Physiol; 2009 Nov; 297(5):C1188-99. PubMed ID: 19657064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. δ-Catenin Increases the Stability of EGFR by Decreasing c-Cbl Interaction and Enhances EGFR/Erk1/2 Signaling in Prostate Cancer.
    Shrestha N; Shrestha H; Ryu T; Kim H; Simkhada S; Cho YC; Park SY; Cho S; Lee KY; Lee JH; Kim K
    Mol Cells; 2018 Apr; 41(4):320-330. PubMed ID: 29629558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intratumor δ-catenin heterogeneity driven by genomic rearrangement dictates growth factor dependent prostate cancer progression.
    Li M; Nopparat J; Aguilar BJ; Chen YH; Zhang J; Du J; Ai X; Luo Y; Jiang Y; Boykin C; Lu Q
    Oncogene; 2020 May; 39(22):4358-4374. PubMed ID: 32313227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isorhapontigenin induced cell growth inhibition and apoptosis by targeting EGFR-related pathways in prostate cancer.
    Zhu C; Zhu Q; Wu Z; Yin Y; Kang D; Lu S; Liu P
    J Cell Physiol; 2018 Feb; 233(2):1104-1119. PubMed ID: 28422286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. δ-Catenin, a Wnt/β-catenin modulator, reveals inducible mutagenesis promoting cancer cell survival adaptation and metabolic reprogramming.
    Nopparat J; Zhang J; Lu JP; Chen YH; Zheng D; Neufer PD; Fan JM; Hong H; Boykin C; Lu Q
    Oncogene; 2015 Mar; 34(12):1542-52. PubMed ID: 24727894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-590-3p promotes cell proliferation and invasion by targeting inositol polyphosphate 4-phosphatase type II in human prostate cancer cells.
    Chen H; Luo Q; Li H
    Tumour Biol; 2017 Mar; 39(3):1010428317695941. PubMed ID: 28345464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chemopreventive retinoid 4HPR impairs prostate cancer cell migration and invasion by interfering with FAK/AKT/GSK3beta pathway and beta-catenin stability.
    Benelli R; Monteghirfo S; Venè R; Tosetti F; Ferrari N
    Mol Cancer; 2010 Jun; 9():142. PubMed ID: 20537156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanism of adaphostin-mediated G1 arrest in prostate cancer (PC-3) cells: signaling events mediated by hepatocyte growth factor receptor, c-Met, and p38 MAPK pathways.
    Mukhopadhyay I; Sausville EA; Doroshow JH; Roy KK
    J Biol Chem; 2006 Dec; 281(49):37330-44. PubMed ID: 16956884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased Akt signaling resulting from the loss of androgen responsiveness in prostate cancer.
    Dulinska-Litewka J; McCubrey JA; Laidler P
    Curr Med Chem; 2013; 20(1):144-57. PubMed ID: 23033951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol hexaphosphate downregulates both constitutive and ligand-induced mitogenic and cell survival signaling, and causes caspase-mediated apoptotic death of human prostate carcinoma PC-3 cells.
    Gu M; Raina K; Agarwal C; Agarwal R
    Mol Carcinog; 2010 Jan; 49(1):1-12. PubMed ID: 19544333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway.
    Chang YL; Zhou PJ; Wei L; Li W; Ji Z; Fang YX; Gao WQ
    Oncotarget; 2015 Sep; 6(27):24017-31. PubMed ID: 26172296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.
    Wang H; Hong J; Yang CS
    Mol Carcinog; 2016 Nov; 55(11):1728-1738. PubMed ID: 26465359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3'-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells.
    Li Y; Wang Z; Kong D; Murthy S; Dou QP; Sheng S; Reddy GP; Sarkar FH
    J Biol Chem; 2007 Jul; 282(29):21542-50. PubMed ID: 17522055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of phosphatidylinositol 3-kinase/Akt signaling by EGF downregulates membranous E-cadherin and β-catenin and enhances invasion in nasopharyngeal carcinoma cells.
    Yip WK; Seow HF
    Cancer Lett; 2012 May; 318(2):162-72. PubMed ID: 22182447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sin1 promotes proliferation and invasion of prostate cancer cells by modulating mTORC2-AKT and AR signaling cascades.
    Huang Y; Feng G; Cai J; Peng Q; Yang Z; Yan C; Yang L; Wang Z
    Life Sci; 2020 May; 248():117449. PubMed ID: 32088212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.