These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
483 related articles for article (PubMed ID: 34070033)
1. EMS Derived Wheat Mutant BIG8-1 ( le Roux ML; Burger NFV; Vlok M; Kunert KJ; Cullis CA; Botha AM Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34070033 [TBL] [Abstract][Full Text] [Related]
2. Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. Tian F; Gong J; Zhang J; Zhang M; Wang G; Li A; Wang W J Exp Bot; 2013 Apr; 64(6):1509-20. PubMed ID: 23378376 [TBL] [Abstract][Full Text] [Related]
3. Metabolic indicators of drought stress tolerance in wheat: glutamine synthetase isoenzymes and Rubisco. Nagy Z; Németh E; Guóth A; Bona L; Wodala B; Pécsváradi A Plant Physiol Biochem; 2013 Jun; 67():48-54. PubMed ID: 23542183 [TBL] [Abstract][Full Text] [Related]
4. Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. Ahmad A; Aslam Z; Naz M; Hussain S; Javed T; Aslam S; Raza A; Ali HM; Siddiqui MH; Salem MZM; Hano C; Shabbir R; Ahmar S; Saeed T; Jamal MA PLoS One; 2021; 16(12):e0260556. PubMed ID: 34928959 [TBL] [Abstract][Full Text] [Related]
5. Growth and Photosynthetic Activity of Selected Spelt Varieties ( Ratajczak K; Sulewska H; Błaszczyk L; Basińska-Barczak A; Mikołajczak K; Salamon S; Szymańska G; Dryjański L Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121138 [TBL] [Abstract][Full Text] [Related]
6. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. Wang X; Vignjevic M; Jiang D; Jacobsen S; Wollenweber B J Exp Bot; 2014 Dec; 65(22):6441-56. PubMed ID: 25205581 [TBL] [Abstract][Full Text] [Related]
7. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789 [TBL] [Abstract][Full Text] [Related]
8. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Abid M; Tian Z; Ata-Ul-Karim ST; Liu Y; Cui Y; Zahoor R; Jiang D; Dai T Plant Physiol Biochem; 2016 Sep; 106():218-27. PubMed ID: 27179928 [TBL] [Abstract][Full Text] [Related]
9. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply. Wang X; Wang L; Shangguan Z PLoS One; 2016; 11(11):e0165733. PubMed ID: 27802318 [TBL] [Abstract][Full Text] [Related]
10. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure. Yasmeen F; Raja NI; Razzaq A; Komatsu S Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299 [TBL] [Abstract][Full Text] [Related]
11. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Zivcak M; Brestic M; Balatova Z; Drevenakova P; Olsovska K; Kalaji HM; Yang X; Allakhverdiev SI Photosynth Res; 2013 Nov; 117(1-3):529-46. PubMed ID: 23860828 [TBL] [Abstract][Full Text] [Related]
12. Drought stimulus enhanced stress tolerance in winter wheat (Triticum aestivum L.) by improving physiological characteristics, growth, and water productivity. Ru C; Hu X; Chen D; Wang W Plant Physiol Biochem; 2024 Sep; 214():108906. PubMed ID: 38986237 [TBL] [Abstract][Full Text] [Related]
13. Mitigating drought-induced oxidative stress in wheat (Triticum aestivum L.) through foliar application of sulfhydryl thiourea. Ishfaq N; Waraich EA; Ahmad M; Hussain S; Zulfiqar U; Din KU; Haider A; Yong JWH; Askri SMH; Ali HM Sci Rep; 2024 Jul; 14(1):15985. PubMed ID: 38987560 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of the similarities and differences of soil drought and polyethylene glycol stress responses in wheat (Triticum aestivum L.). Cui G; Zhao Y; Zhang J; Chao M; Xie K; Zhang C; Sun F; Liu S; Xi Y Plant Mol Biol; 2019 Jul; 100(4-5):391-410. PubMed ID: 30953278 [TBL] [Abstract][Full Text] [Related]
15. Water stress effects on stay green and chlorophyll fluorescence with focus on yield characteristics of diverse bread wheats. Ali A; Ullah Z; Sher H; Abbas Z; Rasheed A Planta; 2023 Apr; 257(6):104. PubMed ID: 37115268 [TBL] [Abstract][Full Text] [Related]
16. C4 photosynthetic enzymes play a key role in wheat spike bracts primary carbon metabolism response under water deficit. Zhang X; Pu P; Tang Y; Zhang L; Lv J Plant Physiol Biochem; 2019 Sep; 142():163-172. PubMed ID: 31299598 [TBL] [Abstract][Full Text] [Related]
17. Drought Stress Tolerance and Photosynthetic Activity of Alloplasmic Lines Terletskaya NV; Shcherban AB; Nesterov MA; Perfil'ev RN; Salina EA; Altayeva NA; Blavachinskaya IV Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397492 [TBL] [Abstract][Full Text] [Related]
18. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Sharma DK; Andersen SB; Ottosen CO; Rosenqvist E Physiol Plant; 2015 Feb; 153(2):284-98. PubMed ID: 24962705 [TBL] [Abstract][Full Text] [Related]
19. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related]
20. Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Dugasa MT; Cao F; Ibrahim W; Wu F Physiol Plant; 2019 Feb; 165(2):134-143. PubMed ID: 29635753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]