These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 34070263)
1. Properties Enhancement of High Molecular Weight Polylactide Using Stereocomplex Polylactide as a Nucleating Agent. Purnama P; Samsuri M; Iswaldi I Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34070263 [TBL] [Abstract][Full Text] [Related]
2. The Effect of Stereocomplex Polylactide Particles on the Stereocomplexation of High Molecular Weight Polylactide Blends. Samsuri M; Iswaldi I; Purnama P Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205488 [TBL] [Abstract][Full Text] [Related]
3. Enhancement in Crystallizability of Poly( Baimark Y; Srihanam P; Srisuwan Y; Phromsopha T Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236039 [TBL] [Abstract][Full Text] [Related]
4. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. Jalali A; Romero-Diez S; Nofar M; Park CB Int J Biol Macromol; 2021 Dec; 193(Pt B):2210-2220. PubMed ID: 34798187 [TBL] [Abstract][Full Text] [Related]
5. Enhancing Stereocomplexation Ability of Polylactide by Coalescing from Its Inclusion Complex with Urea. Liu P; Chen XT; Ye HM Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965892 [TBL] [Abstract][Full Text] [Related]
6. Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate- Shi X; Qin J; Wang L; Ren L; Rong F; Li D; Wang R; Zhang G RSC Adv; 2018 Mar; 8(22):11850-11861. PubMed ID: 35539374 [TBL] [Abstract][Full Text] [Related]
7. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends. Park HS; Hong CK Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199577 [TBL] [Abstract][Full Text] [Related]
8. Morphological, thermal, rheological and mechanical properties of poly (butylene carbonate) reinforced by stereocomplex polylactide. Li Y; Han C; Yu Y; Huang D Int J Biol Macromol; 2019 Sep; 137():1169-1178. PubMed ID: 31301391 [TBL] [Abstract][Full Text] [Related]
9. Influence of Polylactide (PLA) Stereocomplexation on the Microstructure of PLA/PBS Blends and the Cell Morphology of Their Microcellular Foams. Sun Z; Wang L; Zhou J; Fan X; Xie H; Zhang H; Zhang G; Shi X Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33076235 [TBL] [Abstract][Full Text] [Related]
10. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW; Niu J; Peng H; Rong W Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850 [TBL] [Abstract][Full Text] [Related]
12. Effect of PDLA and Amide Compounds as Mixed Nucleating Agents on Crystallization Behaviors of Poly (l-lactic Acid). Khwanpipat T; Seadan M; Suttiruengwong S Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29976863 [TBL] [Abstract][Full Text] [Related]
13. Remarkably enhanced stereocomplex crystallization of high-molar-mass enantiomeric polylactide blends by adding double-grafted copolymers. Yuan L; Deng S; Wang Y; Xiu H; Zhang Q; Bai H Int J Biol Macromol; 2024 Feb; 258(Pt 1):128919. PubMed ID: 38134994 [TBL] [Abstract][Full Text] [Related]
14. Effects on the crystallization behavior and biocompatibility of poly(LLA-ran-PDO-ran-GA) with poly(d-lactide) as nucleating agents. Fan T; Qin J; Dong F; Meng X; Li Y; Wang Y; Liu Q; Wang G RSC Adv; 2022 Mar; 12(17):10711-10724. PubMed ID: 35424991 [TBL] [Abstract][Full Text] [Related]
15. Poly(L-lactide) nanocomposites containing poly(D-lactide) grafted nanohydroxyapatite with improved interfacial adhesion via stereocomplexation. Huang G; Du Z; Yuan Z; Gu L; Cai Q; Yang X J Mech Behav Biomed Mater; 2018 Feb; 78():10-19. PubMed ID: 29128694 [TBL] [Abstract][Full Text] [Related]
16. Influence of poly(lactide) stereocomplexes as nucleating agents on the crystallization behavior of poly(lactide)s. Ji N; Hu G; Li J; Ren J RSC Adv; 2019 Feb; 9(11):6221-6227. PubMed ID: 35517274 [TBL] [Abstract][Full Text] [Related]
17. Morphology and internal structure control over PLA microspheres by compounding PLLA and PDLA and effects on drug release behavior. Yu B; Meng L; Fu S; Zhao Z; Liu Y; Wang K; Fu Q Colloids Surf B Biointerfaces; 2018 Dec; 172():105-112. PubMed ID: 30142528 [TBL] [Abstract][Full Text] [Related]
18. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone- Jing Z; Li J; Xiao W; Xu H; Hong P; Li Y RSC Adv; 2019 Aug; 9(45):26067-26079. PubMed ID: 35531016 [TBL] [Abstract][Full Text] [Related]
19. The Effect of Polyethylene Glycol on the Non-Isothermal Crystallization of Poly(L-lactide) and Poly(D-lactide) Blends. Phuangthong P; Li W; Shen J; Nofar M; Worajittiphon P; Srithep Y Polymers (Basel); 2024 Jul; 16(15):. PubMed ID: 39125155 [TBL] [Abstract][Full Text] [Related]
20. Competitive Stereocomplexation and Homocrystallization Behaviors in the Poly(lactide) Blends of PLLA and PDLA-PEG-PDLA with Controlled Block Length. Jing Z; Shi X; Zhang G Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]