These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 34070433)

  • 1. Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study.
    Li FQ; Zhang Y; Zhang SL
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34070433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural, elastic, and electronic properties of chemically functionalized boron phosphide monolayer.
    Vu TV; Kartamyshev AI; Hieu NV; Dang TDH; Nguyen SN; Poklonski NA; Nguyen CV; Phuc HV; Hieu NN
    RSC Adv; 2021 Feb; 11(15):8552-8558. PubMed ID: 35423400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress- and electric-field-induced band gap tuning in hexagonal boron phosphide layers.
    Wang Y; Huang C; Li D; Huang F; Zhang X; Huang K; Xu J
    J Phys Condens Matter; 2019 Nov; 31(46):465502. PubMed ID: 31362271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Principles Study on the Structural and Electronic Properties of Monolayer MoS₂ with S-Vacancy under Uniaxial Tensile Strain.
    Wang W; Yang C; Bai L; Li M; Li W
    Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29382182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional aluminum phosphide semiconductor with tunable direct band gap for nanoelectric applications.
    Yang X; Mao C; Hu Y; Cao H; Zhang Y; Zhao D; Chen Z; Xie M
    RSC Adv; 2020 Jun; 10(42):25170-25176. PubMed ID: 35517490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic vacancy defects and mechanical strain for the modulation of the mechanical, electronic and optical properties of monolayer tungsten disulfide.
    Gao C; Yang X; Jiang M; Chen L; Chen Z; Singh CV
    Phys Chem Chem Phys; 2021 Mar; 23(10):6298-6308. PubMed ID: 33688866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-optical properties of strained monolayer boron phosphide.
    Mortezaei Nobahari M
    Sci Rep; 2023 Jun; 13(1):9849. PubMed ID: 37330598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study.
    Wang W; Bai L; Yang C; Fan K; Xie Y; Li M
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and transport property of two-dimensional boron phosphide sheet.
    Mondal R; Bedamani Singh N; Deb J; Mukherjee S; Sarkar U
    J Mol Graph Model; 2022 May; 112():108117. PubMed ID: 34995892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic and optical properties of boron phosphide/blue phosphorus heterostructures.
    Mogulkoc Y; Modarresi M; Mogulkoc A; Alkan B
    Phys Chem Chem Phys; 2018 May; 20(17):12053-12060. PubMed ID: 29675536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-tuned magnetism and half-metal to metal transition in defective BCN monolayer.
    Wang J; Kou L; Ni Y; Hu X
    J Phys Condens Matter; 2021 May; 33(23):. PubMed ID: 33636712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tight-binding model for electronic structure of hexagonal boron phosphide monolayer and bilayer.
    Wang Y; Huang C; Li D; Li P; Yu J; Zhang Y; Xu J
    J Phys Condens Matter; 2019 Jul; 31(28):285501. PubMed ID: 30933938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain induced new phase and indirect-direct band gap transition of monolayer InSe.
    Hu T; Zhou J; Dong J
    Phys Chem Chem Phys; 2017 Aug; 19(32):21722-21728. PubMed ID: 28776623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct band gap and anisotropic transport of ZnSb monolayers tuned by hydrogenation and strain.
    Guan Z; Yang W; Wang H; Wang H; Li J
    RSC Adv; 2022 Jan; 12(5):2693-2700. PubMed ID: 35425290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-tunable electronic and optical properties of BC
    Zhang Y; Wu ZF; Gao PF; Fang DQ; Zhang EH; Zhang SL
    RSC Adv; 2018 Jan; 8(3):1686-1692. PubMed ID: 35540882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure and optical properties of novel monolayer gallium nitride and boron phosphide heterobilayers.
    Mogulkoc A; Mogulkoc Y; Modarresi M; Alkan B
    Phys Chem Chem Phys; 2018 Nov; 20(44):28124-28134. PubMed ID: 30387488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenation and Fluorination of 2D Boron Phosphide and Boron Arsenide: A Density Functional Theory Investigation.
    Ullah S; Denis PA; Sato F
    ACS Omega; 2018 Dec; 3(12):16416-16423. PubMed ID: 31458278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-Principles Study of Structural and Electronic Properties of Monolayer PtX
    Ge X; Zhou X; Sun D; Chen X
    ACS Omega; 2023 Feb; 8(6):5715-5721. PubMed ID: 36816647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure of the germanium phosphide monolayer and Li-diffusion in its bilayer.
    Shojaei F; Kang HS
    Phys Chem Chem Phys; 2016 Nov; 18(47):32458-32465. PubMed ID: 27869254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.