These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

634 related articles for article (PubMed ID: 34070528)

  • 41. Antropo: An open-source platform to increase the anthropomorphism of the Franka Emika collaborative robot arm.
    Scholz C; Cao HL; El Makrini I; Vanderborght B
    PLoS One; 2023; 18(10):e0292078. PubMed ID: 37851613
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Augmentation of haptic feedback for teleoperated robotic surgery.
    Schleer P; Kaiser P; Drobinsky S; Radermacher K
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):515-529. PubMed ID: 32002750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Eye-Hand Coordination Assessment Metrics Using a Multi-Platform Haptic System with Eye-Tracking and Motion Capture Feedback.
    Pernalete N; Raheja A; Segura M; Menychtas D; Wieczorek T; Carey S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2150-2153. PubMed ID: 30440829
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Study on the Role of Affective Feedback in Robot-Assisted Learning.
    Błażejowska G; Gruba Ł; Indurkhya B; Gunia A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Motion synthesis and force distribution analysis for a biped robot.
    Trojnacki MT; Zielińska T
    Acta Bioeng Biomech; 2011; 13(2):45-56. PubMed ID: 21761810
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 49. More than just co-workers: Presence of humanoid robot co-worker influences human performance.
    Vasalya A; Ganesh G; Kheddar A
    PLoS One; 2018; 13(11):e0206698. PubMed ID: 30408062
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tool/tissue interaction feedback modalities in robot-assisted lump localization.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3854-7. PubMed ID: 17946205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a Real-Time Human-Robot Collaborative System Based on 1 kHz Visual Feedback Control and Its Application to a Peg-in-Hole Task.
    Yamakawa Y; Matsui Y; Ishikawa M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33478053
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Factors Affecting Workers' Mental Stress in Handover Activities During Human-Robot Collaboration.
    Lu L; Xie Z; Wang H; Su B; Jung S; Xu X
    Hum Factors; 2024 Jan; ():187208241226823. PubMed ID: 38215357
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Resilient and Effective Task Scheduling Approach for Industrial Human-Robot Collaboration.
    Pupa A; Van Dijk W; Brekelmans C; Secchi C
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808396
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Paralyzed subject controls telepresence mobile robot using novel sEMG brain-computer interface: case study.
    Lyons KR; Joshi SS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650428. PubMed ID: 24187246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning.
    Baykal C; Torres LG; Alterovitz R
    Rep U S; 2015 Sep; 2015():4381-4387. PubMed ID: 26951790
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Handover Control for Human-Robot and Robot-Robot Collaboration.
    Costanzo M; De Maria G; Natale C
    Front Robot AI; 2021; 8():672995. PubMed ID: 34026858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Generative Model to Embed Human Expressivity into Robot Motions.
    Osorio P; Sagawa R; Abe N; Venture G
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toward understanding social cues and signals in human-robot interaction: effects of robot gaze and proxemic behavior.
    Fiore SM; Wiltshire TJ; Lobato EJ; Jentsch FG; Huang WH; Axelrod B
    Front Psychol; 2013; 4():859. PubMed ID: 24348434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.