These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34070676)
1. A Comparative Study of Pyrolysis Liquids by Slow Pyrolysis of Industrial Hemp Leaves, Hurds and Roots. Salami A; Heikkinen J; Tomppo L; Hyttinen M; Kekäläinen T; Jänis J; Vepsäläinen J; Lappalainen R Molecules; 2021 May; 26(11):. PubMed ID: 34070676 [TBL] [Abstract][Full Text] [Related]
2. Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance. Jiang B; Liang Y; Xu C; Zhang J; Hu M; Shi Q Environ Sci Technol; 2014 May; 48(9):4716-23. PubMed ID: 24702199 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the Compounds Released in the Gaseous Waste Stream during the Slow Pyrolysis of Hemp ( Marrot L; Meile K; Zouari M; DeVallance D; Sandak A; Herrera R Molecules; 2022 Apr; 27(9):. PubMed ID: 35566144 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Mineral and Synthetic Base Oils by Gas Chromatography-Mass Spectrometry and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Lee S; Palacio Lozano DC; Jones HE; Shin K; Barrow MP Energy Fuels; 2022 Nov; 36(22):13518-13525. PubMed ID: 36425344 [TBL] [Abstract][Full Text] [Related]
5. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges. Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687 [TBL] [Abstract][Full Text] [Related]
6. Evolved gas analysis and slow pyrolysis mechanism of bamboo by thermogravimetric analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Wu X; Ba Y; Wang X; Niu M; Fang K Bioresour Technol; 2018 Oct; 266():407-412. PubMed ID: 29982064 [TBL] [Abstract][Full Text] [Related]
7. Ultra-high performance supercritical fluid chromatography hyphenated to atmospheric pressure chemical ionization high resolution mass spectrometry for the characterization of fast pyrolysis bio-oils. Crepier J; Le Masle A; Charon N; Albrieux F; Duchene P; Heinisch S J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1086():38-46. PubMed ID: 29656082 [TBL] [Abstract][Full Text] [Related]
8. Real time monitoring of slow pyrolysis of polyethylene terephthalate (PET) by different mass spectrometric techniques. Dhahak A; Grimmer C; Neumann A; Rüger C; Sklorz M; Streibel T; Zimmermann R; Mauviel G; Burkle-Vitzthum V Waste Manag; 2020 Apr; 106():226-239. PubMed ID: 32240939 [TBL] [Abstract][Full Text] [Related]
9. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal. Zuber J; Kroll MM; Rathsack P; Otto M Int J Anal Chem; 2016; 2016():5960916. PubMed ID: 27066076 [TBL] [Abstract][Full Text] [Related]
10. Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC-MS) techniques. Sugumaran V; Prakash S; Ramu E; Arora AK; Bansal V; Kagdiyal V; Saxena D J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jul; 1058():47-56. PubMed ID: 28535422 [TBL] [Abstract][Full Text] [Related]
11. Application of mass spectrometry in the characterization of chemicals in coal-derived liquids. Liu FJ; Fan M; Wei XY; Zong ZM Mass Spectrom Rev; 2017 Jul; 36(4):543-579. PubMed ID: 27074547 [TBL] [Abstract][Full Text] [Related]
12. Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels. Aysu T Bioresour Technol; 2015 Sep; 191():253-62. PubMed ID: 26000835 [TBL] [Abstract][Full Text] [Related]
13. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends. Rajamohan S; Kasimani R Environ Sci Pollut Res Int; 2018 Apr; 25(10):9523-9538. PubMed ID: 29354857 [TBL] [Abstract][Full Text] [Related]
14. A study on pyrolysis of Canada thistle (Cirsium arvense) with titania based catalysts for bio-fuel production. Aysu T Bioresour Technol; 2016 Nov; 219():175-184. PubMed ID: 27490443 [TBL] [Abstract][Full Text] [Related]
15. Continuous rotary kiln pyrolysis of cassava plant shoot system and wide speciation of oxygenated and nitrogen-containing compounds in bio-oil by HESI and APPI-Orbitrap MS. Silva WR; Santos RM; Wisniewski A Bioresour Technol; 2024 Jul; 404():130915. PubMed ID: 38823561 [TBL] [Abstract][Full Text] [Related]
16. Chemical characterization of pitch deposits produced in the manufacturing of high-quality paper pulps from hemp fibers. Gutiérrez A; del Río JC Bioresour Technol; 2005 Sep; 96(13):1445-50. PubMed ID: 15939271 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of the pyrolysis and hydrolysis conversion of tire. Wang L; Wang X; Yu J J Hazard Mater; 2024 Apr; 468():133724. PubMed ID: 38382336 [TBL] [Abstract][Full Text] [Related]
18. New Methods for the Comprehensive Analysis of Bioactive Compounds in Pellati F; Brighenti V; Sperlea J; Marchetti L; Bertelli D; Benvenuti S Molecules; 2018 Oct; 23(10):. PubMed ID: 30322208 [No Abstract] [Full Text] [Related]
19. Detailed nature of tire pyrolysis oil blended with light cycle oil and its hydroprocessed products using a NiW/HY catalyst. Palos R; Kekäläinen T; Duodu F; Gutiérrez A; Arandes JM; Jänis J; Castaño P Waste Manag; 2021 Jun; 128():36-44. PubMed ID: 33962155 [TBL] [Abstract][Full Text] [Related]