BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34070759)

  • 21. Histone acetylation alters the capacity of the H1 histones to condense transcriptionally active/competent chromatin.
    Ridsdale JA; Hendzel MJ; Delcuve GP; Davie JR
    J Biol Chem; 1990 Mar; 265(9):5150-6. PubMed ID: 2318888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone hyperacetylation is induced in chick erythrocyte nuclei during reactivation in heterokaryons.
    Pfeffer U; Ferrari N; Tosetti F; Vidali G
    Exp Cell Res; 1988 Sep; 178(1):25-30. PubMed ID: 3044809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential compaction of transcriptionally competent and repressed chromatin reconstituted with histone H1 subtypes.
    Nagaraja S; Delcuve GP; Davie JR
    Biochim Biophys Acta; 1995 Jan; 1260(2):207-14. PubMed ID: 7841198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors affecting nucleosome structure in transcriptionally active chromatin. Histone acetylation, nascent RNA and inhibitors of RNA synthesis.
    Boffa LC; Walker J; Chen TA; Sterner R; Mariani MR; Allfrey VG
    Eur J Biochem; 1990 Dec; 194(3):811-23. PubMed ID: 1702716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier.
    Huang S; Li X; Yusufzai TM; Qiu Y; Felsenfeld G
    Mol Cell Biol; 2007 Nov; 27(22):7991-8002. PubMed ID: 17846119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insulation of the chicken beta-globin chromosomal domain from a chromatin-condensing protein, MENT.
    Istomina NE; Shushanov SS; Springhetti EM; Karpov VL; Krasheninnikov IA; Stevens K; Zaret KS; Singh PB; Grigoryev SA
    Mol Cell Biol; 2003 Sep; 23(18):6455-68. PubMed ID: 12944473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on histone oligomers. III. Effects of salt concentration and pH on the stability of histone octamer in chicken erythrocyte chromatin.
    Kawashima S; Imahori K
    J Biochem; 1982 Mar; 91(3):959-66. PubMed ID: 7076655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatin structure of erythroid-specific genes of immature and mature chicken erythrocytes.
    Delcuve GP; Davie JR
    Biochem J; 1989 Oct; 263(1):179-86. PubMed ID: 2604693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histone acetylation is required to maintain the unfolded nucleosome structure associated with transcribing DNA.
    Walia H; Chen HY; Sun JM; Holth LT; Davie JR
    J Biol Chem; 1998 Jun; 273(23):14516-22. PubMed ID: 9603965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of benzo[alpha]pyrene diol-epoxide with nuclei and isolated chromatin.
    Kootstra A; Slaga TJ; Olins DE
    Chem Biol Interact; 1979 Dec; 28(2-3):225-36. PubMed ID: 121556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acetylation of histone H4 in chicken erythrocyte and cuttle-fish testis chromatin.
    Wouters-Tyrou D; Martin-Ponthieu A; Sautiere P; Biserte G
    FEBS Lett; 1981 Jun; 128(2):195-200. PubMed ID: 7262310
    [No Abstract]   [Full Text] [Related]  

  • 32. Histone modifications in the yeast S. Cerevisiae.
    Davie JR; Saunders CA; Walsh JM; Weber SC
    Nucleic Acids Res; 1981 Jul; 9(13):3205-16. PubMed ID: 7024912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Features of the chromatin structure of erythrocytes depending on the properties of lysine-rich histones].
    Kostyleva EI; Selivanova GV; Zalenskaia IA
    Mol Biol (Mosk); 1989; 23(1):73-9. PubMed ID: 2544799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements.
    Zink LM; Delbarre E; Eberl HC; Keilhauer EC; Bönisch C; Pünzeler S; Bartkuhn M; Collas P; Mann M; Hake SB
    Nucleic Acids Res; 2017 Jun; 45(10):5691-5706. PubMed ID: 28334823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PRMT1 Is Required for the Maintenance of Mature β-Cell Identity.
    Kim H; Yoon BH; Oh CM; Lee J; Lee K; Song H; Kim E; Yi K; Kim MY; Kim H; Kim YK; Seo EH; Heo H; Kim HJ; Lee J; Suh JM; Koo SH; Seong JK; Kim S; Ju YS; Shong M; Kim M; Kim H
    Diabetes; 2020 Mar; 69(3):355-368. PubMed ID: 31848151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple histone acetyltransferases are associated with a chicken erythrocyte chromatin fraction enriched in active genes.
    Hebbes TR; Allen SC
    J Biol Chem; 2000 Oct; 275(40):31347-52. PubMed ID: 10896666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histone acetylation in chicken erythrocytes. Estimation of the percentage of sites actively modified.
    Zhang D; Nelson DA
    Biochem J; 1986 Dec; 240(3):857-62. PubMed ID: 3827874
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactivation of DNA replication in erythrocyte nuclei by Xenopus egg extract involves energy-dependent chromatin decondensation and changes in histone phosphorylation.
    Blank T; Trendelenburg M; Kleinschmidt JA
    Exp Cell Res; 1992 Oct; 202(2):224-32. PubMed ID: 1397077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetylation and methylation of histones H3 and H4 in chicken immature erythrocytes are not directly coupled.
    Hendzel MJ; Davie JR
    Biochem Biophys Res Commun; 1992 May; 185(1):414-9. PubMed ID: 1599479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectroscopic studies on histone-DNA interactions. II. Three transitions in nucleosomes resolved by salt-titration.
    Oohara I; Wada A
    J Mol Biol; 1987 Jul; 196(2):399-411. PubMed ID: 3656451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.