These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34070970)

  • 1. Using Waveguides to Model the Dynamic Stiffness of Pre-Compressed Natural Rubber Vibration Isolators.
    Coja M; Kari L
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34070970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the dynamic stiffness of preloaded vibration isolators in the audible frequency range: modeling and experiments.
    Kari L
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1909-21. PubMed ID: 12703703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and analysis of a metal rubber vibration isolation system considering the nonlinear stiffness characteristics.
    Liu Y; Liu J; Pan G; Huang Q
    Rev Sci Instrum; 2023 Jan; 94(1):015105. PubMed ID: 36725566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling and experimental testing analysis of Assembled Rubber Metal Isolator.
    Wu J; Liu C; Jiang H; Wang Z
    Sci Prog; 2020; 103(3):36850420956985. PubMed ID: 32945233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on a nonlinear quasi-zero stiffness vibration isolator with a vibration absorber.
    Li SH; Liu N; Ding H
    Sci Prog; 2020; 103(3):36850420940891. PubMed ID: 32686995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations.
    Ye K; Ji JC; Brown T
    Mech Syst Signal Process; 2021 Feb; 149():107340. PubMed ID: 33082621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive Model of Isotropic Magneto-Sensitive Rubber with Amplitude, Frequency, Magnetic and Temperature Dependence under a Continuum Mechanics Basis.
    Wang B; Kari L
    Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and analysis of a negative stiffness magnetic suspension vibration isolator with experimental investigations.
    Zhu Y; Li Q; Xu D; Hu C; Zhang M
    Rev Sci Instrum; 2012 Sep; 83(9):095108. PubMed ID: 23020420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the high-frequency complex modulus of silicone rubber using standing Lamb waves and an inverse finite element method.
    Jonsson U; Lindahl O; Andersson B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2106-20. PubMed ID: 25474785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements.
    Loveday PW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2045-51. PubMed ID: 18019242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency dependence prediction and parameter identification of rubber bushing.
    Li G; Wu L; Zhang S; Liu F
    Sci Rep; 2022 Jan; 12(1):863. PubMed ID: 35039585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.
    Zeng Q; Zhao X
    PDA J Pharm Sci Technol; 2018; 72(2):134-148. PubMed ID: 29158288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator.
    Hosain MA; Sirr A; Ju L; Blair DG
    Rev Sci Instrum; 2012 Aug; 83(8):085108. PubMed ID: 22938333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibration characteristic analysis of single-cylinder two-stroke engine and mounting system optimization design.
    Liang J; Zhang D; Wang S
    Sci Prog; 2020; 103(3):36850420930631. PubMed ID: 32666884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams.
    Zhang X; Ding X; Wu D; Qi J; Wang R; Lu S; Yan X
    Rev Sci Instrum; 2016 Jun; 87(6):066106. PubMed ID: 27370507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the Complex Dynamic Stiffness of Inflated Rubber Diaphragms in Pneumatic Springs Using Finite Element Method.
    Shin YH; Lee JH
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations.
    Kasra M; Shirazi-Adl A; Drouin G
    Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of a fiber-gel finite element model of vocal fold vibration to a transversely isotropic stiffness model.
    Titze IR; Alipour F; Blake D; Palaparthi A
    J Acoust Soc Am; 2017 Sep; 142(3):1376. PubMed ID: 28964045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerically Exploring the Potential of Abating the Energy Flow Peaks through Tough, Single Network Hydrogel Vibration Isolators with Chemical and Physical Cross-Links.
    Kari L
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators.
    Mizumoto T; Shoji Y; Takei R
    Materials (Basel); 2012 May; 5(5):985-1004. PubMed ID: 28817020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.