These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34071372)

  • 1. Asymmetric Gait Analysis Using a DTW Algorithm with Combined Gyroscope and Pressure Sensor.
    Jeong YK; Baek KR
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Physiological Significance of Four Inertial Gait Features in Multiple Sclerosis.
    Dandu SR; Engelhard MM; Qureshi A; Gong J; Lach JC; Brandt-Pearce M; Goldman MD
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):40-46. PubMed ID: 29300700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Accuracy of the Microsoft Kinect V2 Sensor for Human Gait Analysis. A Different Approach for Comparison with the Ground Truth.
    Guffanti D; Brunete A; Hernando M; Rueda J; Navarro Cabello E
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait speed and gait asymmetry in individuals with chronic idiopathic neck pain.
    Kirmizi M; Simsek IE; Elvan A; Akcali O; Angin S
    Musculoskelet Sci Pract; 2019 Jun; 41():23-27. PubMed ID: 30870652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of the bilateral coordination and gait asymmetry using inertial measurement unit-based gait analysis.
    Han SH; Kim CO; Kim KJ; Jeon J; Chang H; Kim ES; Park H
    PLoS One; 2019; 14(10):e0222913. PubMed ID: 31574130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships among subjective patient-reported outcome, quality of life, and objective gait characteristics using wearable foot inertial-sensor assessment in foot-ankle patients.
    Angthong C; Veljkovic A
    Eur J Orthop Surg Traumatol; 2019 Apr; 29(3):683-687. PubMed ID: 30488138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns.
    Sunarya U; Sun Hariyani Y; Cho T; Roh J; Hyeong J; Sohn I; Kim S; Park C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy.
    Carcreff L; Paraschiv-Ionescu A; Gerber CN; Newman CJ; Armand S; Aminian K
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population.
    De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K
    Clin Biomech (Bristol, Avon); 2018 May; 54():22-27. PubMed ID: 29533844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-rigid alignment pipeline applied to human gait signals acquired with optical motion capture systems and inertial sensors.
    Soussé R; Verdú J; Jauregui R; Ferrer-Roca V; Balocco S
    J Biomech; 2020 Jan; 98():109429. PubMed ID: 31662198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobile inertial sensor based gait analysis: Validity and reliability of spatiotemporal gait characteristics in healthy seniors.
    Donath L; Faude O; Lichtenstein E; Pagenstert G; Nüesch C; Mündermann A
    Gait Posture; 2016 Sep; 49():371-374. PubMed ID: 27494305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic changes in patients with severe knee osteoarthritis are a result of reduced walking speed rather than disease severity.
    Ismailidis P; Egloff C; Hegglin L; Pagenstert G; Kernen R; Eckardt A; Ilchmann T; Mündermann A; Nüesch C
    Gait Posture; 2020 Jun; 79():256-261. PubMed ID: 32460135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing gait pattern dynamics during symmetric and asymmetric walking using autoregressive modeling.
    Mahzoun Alzakerin H; Halkiadakis Y; Morgan KD
    PLoS One; 2020; 15(12):e0243221. PubMed ID: 33270770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gait stability evaluation method based on wearable acceleration sensors.
    Weng X; Mei C; Gao F; Wu X; Zhang Q; Liu G
    Math Biosci Eng; 2023 Nov; 20(11):20002-20024. PubMed ID: 38052634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of Gait Variability in the Elderly While Walking on a Treadmill with Gait Speed Variation.
    Kim B; Youm C; Park H; Lee M; Noh B
    Int J Environ Res Public Health; 2021 Apr; 18(9):. PubMed ID: 33925047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prediction method of speed-dependent walking patterns for healthy individuals.
    Fukuchi CA; Duarte M
    Gait Posture; 2019 Feb; 68():280-284. PubMed ID: 30551054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson's disease patients.
    Roth N; Küderle A; Ullrich M; Gladow T; Marxreiter F; Klucken J; Eskofier BM; Kluge F
    J Neuroeng Rehabil; 2021 Jun; 18(1):93. PubMed ID: 34082762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.