These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34071503)

  • 1. Merit-Based Motion Planning for Autonomous Vehicles in Urban Scenarios.
    Medina-Lee J; Artuñedo A; Godoy J; Villagra J
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving safety zone model oriented motion planning framework for autonomous truck platooning.
    Wang H; Song L; Wei Z; Peng L; Li J; Hashemi E
    Accid Anal Prev; 2023 Dec; 193():107225. PubMed ID: 37742439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Optimized Trajectory Planner and Motion Controller Framework for Autonomous Driving in Unstructured Environments.
    Xiong L; Fu Z; Zeng D; Leng B
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm.
    Hu H; Lu Z; Wang Q; Zheng C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward a More Complete, Flexible, and Safer Speed Planning for Autonomous Driving via Convex Optimization.
    Zhang Y; Chen H; Waslander SL; Yang T; Zhang S; Xiong G; Liu K
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beam Search Algorithm for Anti-Collision Trajectory Planning for Many-to-Many Encounter Situations with Autonomous Surface Vehicles.
    Koszelew J; Karbowska-Chilinska J; Ostrowski K; Kuczyński P; Kulbiej E; Wołejsza P
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on the Comfort of Vehicle Passengers Considering the Vehicle Motion State and Passenger Physiological Characteristics: Improving the Passenger Comfort of Autonomous Vehicles.
    Wang C; Zhao X; Fu R; Li Z
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32962050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of a Potential Field-Based Decision-Making Algorithm on Autonomous Vehicles for Driving in Complex Environments.
    Martínez C; Jiménez F
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can We Study Autonomous Driving Comfort in Moving-Base Driving Simulators? A Validation Study.
    Bellem H; Klüver M; Schrauf M; Schöner HP; Hecht H; Krems JF
    Hum Factors; 2017 May; 59(3):442-456. PubMed ID: 28005453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Imitation Learning and Human Factors Can Be Combined in a Model Predictive Control Algorithm for Adaptive Motion Planning and Control.
    Karimshoushtari M; Novara C; Tango F
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clothoid: An Integrated Hierarchical Framework for Autonomous Driving in a Dynamic Urban Environment.
    Arshad S; Sualeh M; Kim D; Nam DV; Kim GW
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driver Characteristics Oriented Autonomous Longitudinal Driving System in Car-Following Situation.
    Kim H; Min K; Sunwoo M
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiable Integrated Motion Prediction and Planning With Learnable Cost Function for Autonomous Driving.
    Huang Z; Liu H; Wu J; Lv C
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; PP():. PubMed ID: 37335780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sampling-based real-time motion planning under state uncertainty for autonomous micro-aerial vehicles in GPS-denied environments.
    Li D; Li Q; Cheng N; Song J
    Sensors (Basel); 2014 Nov; 14(11):21791-825. PubMed ID: 25412217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Avoid Collision Control of Autonomous Vehicle Based on Trajectory Re-Planning and V2V Information Interaction.
    Lin F; Wang K; Zhao Y; Wang S
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchical hybrid system of integrated longitudinal and lateral control for intelligent vehicles.
    Chen K; Pei X; Okuda H; Zhu M; Guo X; Guo K; Suzuki T
    ISA Trans; 2020 Nov; 106():200-212. PubMed ID: 32674851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OctoPath: An OcTree-Based Self-Supervised Learning Approach to Local Trajectory Planning for Mobile Robots.
    Trăsnea B; Ginerică C; Zaha M; Măceşanu G; Pozna C; Grigorescu S
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34067237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the safety and operational benefits of mixed traffic environments with different automated vehicle market penetration rates in the proximity of a driveway on an urban arterial.
    Mousavi SM; Osman OA; Lord D; Dixon KK; Dadashova B
    Accid Anal Prev; 2021 Mar; 152():105982. PubMed ID: 33497855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platoon Merging Approach Based on Hybrid Trajectory Planning and CACC Strategies.
    Hidalgo C; Lattarulo R; Flores C; Pérez Rastelli J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application improvement of A* algorithm in intelligent vehicle trajectory planning.
    Xiong X; Min H; Yu Y; Wang P
    Math Biosci Eng; 2020 Nov; 18(1):1-21. PubMed ID: 33525078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.