These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34071551)

  • 21. Highly Sensitive Microwave Sensors Based on Open Complementary Square Split-Ring Resonator for Sensing Liquid Materials.
    Ds C; Nagini KBSS; Barik RK; Koziel S
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wireless Passive Microwave Antenna-Integrated Temperature Sensor Based on CSRR.
    Kou H; Yang L; Zhang X; Shang Z; Shi J; Wang X
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Low-Cost Metamaterial Sensor Based on DS-CSRR for Material Characterization Applications.
    Shahzad W; Hu W; Ali Q; Raza H; Abbas SM; Ligthart LP
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly sensitive metamaterial-based microwave sensor for the application of milk and dairy products.
    Abdulkarim YI; Bakır M; Yaşar İ; Ulutaş H; Karaaslan M; Özkan Alkurt F; Sabah C; Dong J
    Appl Opt; 2022 Mar; 61(8):1972-1981. PubMed ID: 35297889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications.
    Sam S; Lim S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):657-60. PubMed ID: 23549526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing.
    Bogner A; Steiner C; Walter S; Kita J; Hagen G; Moos R
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29064438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extremely Sensitive Microwave Microfluidic Dielectric Sensor Using a Transmission Line Loaded with Shunt LC Resonators.
    Abdelwahab H; Ebrahimi A; Tovar-Lopez FJ; Beziuk G; Ghorbani K
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CSRR-SICW High Sensitivity High Temperature Sensor Based on Si
    Su S; Ren T; Zhang L; Xu F
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33921691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CSRR-Based Microwave Sensor for Dielectric Materials Characterization Applied to Soil Water Content Determination.
    Oliveira JGD; Pinto ENMG; Silva Neto VP; D'Assunção AG
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31906340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor.
    Salim A; Lim S
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.
    Skyllas-Kazacos M; Cao L; Kazacos M; Kausar N; Mousa A
    ChemSusChem; 2016 Jul; 9(13):1521-43. PubMed ID: 27295523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring the state of charge of vanadium redox flow batteries with an EPR-on-a-Chip dipstick sensor.
    Künstner S; McPeak JE; Chu A; Kern M; Dinse KP; Naydenov B; Fischer P; Anders J; Lips K
    Phys Chem Chem Phys; 2024 Jun; 26(25):17785-17795. PubMed ID: 38874514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-Situ Wireless Pressure Measurement Using Zero-Power Packaged Microwave Sensors.
    Philippe J; De Paolis MV; Henry D; Rumeau A; Coustou A; Pons P; Aubert H
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30871142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intelligent Sensing Using Multiple Sensors for Material Characterization.
    Albishi AM; Mirjahanmardi SH; Ali AM; Nayyeri V; Wasly SM; Ramahi OM
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Planar Phase-Variation Microwave Sensors for Material Characterization: A Review and Comparison of Various Approaches.
    Muñoz-Enano J; Coromina J; Vélez P; Su L; Gil M; Casacuberta P; Martín F
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modified Microwave Sensor with a Patterned Ground Heater for Detection and Prevention of Ice Accumulation.
    Kozak R; Wiltshire BD; Khandoker MAR; Golovin K; Zarifi MH
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55483-55492. PubMed ID: 33241686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gold-on-glass microwave split-ring resonators with PDMS microchannels for differential measurement in microfluidic sensing.
    Camli B; Altinagac E; Kizil H; Torun H; Dundar G; Yalcinkaya AD
    Biomicrofluidics; 2020 Sep; 14(5):054102. PubMed ID: 32983311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of Finger Fat Pad Effect on CSRR-Based Sensor Scattering Parameters for Non-Invasive Blood Glucose Level Detection.
    Hannachi C; Deshours F; Alquie G; Kokabi H
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Techniques to Improve the Performance of Planar Microwave Sensors: A Review and Recent Developments.
    Abdolrazzaghi M; Nayyeri V; Martin F
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Double-pass microwave photonic sensing system based on low-coherence interferometry.
    Li L; Yi X; Chew SX; Song S; Nguyen L; Minasian RA
    Opt Lett; 2019 Apr; 44(7):1662-1665. PubMed ID: 30933116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.