These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 34071576)

  • 21. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn
    Hou Z; Dong M; Xiong Y; Zhang X; Ao H; Liu M; Zhu Y; Qian Y
    Small; 2020 Jul; 16(26):e2001228. PubMed ID: 32510836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage.
    Chua R; Cai Y; Lim PQ; Kumar S; Satish R; Manalastas W; Ren H; Verma V; Meng S; Morris SA; Kidkhunthod P; Bai J; Srinivasan M
    ACS Appl Mater Interfaces; 2020 May; 12(20):22862-22872. PubMed ID: 32343545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifunctional Electrolyte Additive Enables Highly Reversible Anodes and Enhanced Stable Cathodes for Aqueous Zinc-Ion Batteries.
    Gong X; Yang H; Wang J; Wang G; Tian J
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4152-4165. PubMed ID: 36629259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Concentrated Salt Electrolyte for a Highly Stable Aqueous Dual-Ion Zinc Battery.
    Clarisza A; Bezabh HK; Jiang SK; Huang CJ; Olbasa BW; Wu SH; Su WN; Hwang BJ
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36644-36655. PubMed ID: 35927979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrolyte Design for In Situ Construction of Highly Zn
    Zeng X; Mao J; Hao J; Liu J; Liu S; Wang Z; Wang Y; Zhang S; Zheng T; Liu J; Rao P; Guo Z
    Adv Mater; 2021 Mar; 33(11):e2007416. PubMed ID: 33576130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Performance Aqueous Zinc-Ion Battery Based on Layered H
    He P; Quan Y; Xu X; Yan M; Yang W; An Q; He L; Mai L
    Small; 2017 Dec; 13(47):. PubMed ID: 29152849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward Long-Life Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes.
    Liu Y; Liu Y; Wu X
    Chem Rec; 2022 Oct; 22(10):e202200088. PubMed ID: 35652535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth.
    Deng Y; Wu Y; Wang L; Zhang K; Wang Y; Yan L
    J Colloid Interface Sci; 2023 Mar; 633():142-154. PubMed ID: 36436347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Strengthened and Toughened Zn-Li-Mn Alloys as Long-Cycling Life and Dendrite-Free Zn Anode for Aqueous Zinc-Ion Batteries.
    Zhang Y; Yang X; Hu Y; Hu K; Lin X; Liu X; Reddy KM; Xie G; Qiu HJ
    Small; 2022 Apr; 18(17):e2200787. PubMed ID: 35344273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS
    Bhoyate S; Mhin S; Jeon JE; Park K; Kim J; Choi W
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27249-27257. PubMed ID: 32437120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery.
    Guo H; Shao Z; Zhang Y; Cui X; Mao L; Cheng S; Ma M; Lan W; Su Q; Xie E
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1481-1488. PubMed ID: 34742067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cation-Deficient Spinel ZnMn
    Zhang N; Cheng F; Liu Y; Zhao Q; Lei K; Chen C; Liu X; Chen J
    J Am Chem Soc; 2016 Oct; 138(39):12894-12901. PubMed ID: 27627103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly Durable Na
    Hu P; Zhu T; Wang X; Wei X; Yan M; Li J; Luo W; Yang W; Zhang W; Zhou L; Zhou Z; Mai L
    Nano Lett; 2018 Mar; 18(3):1758-1763. PubMed ID: 29397745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Synergistic Strategy of Organic Molecules Introduced a High Zn
    Wang N; Zhang Y; Yuan J; Hu L; Sun M; Li Z; Yao X; Weng X; Jia C
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):48081-48090. PubMed ID: 36222419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Operation Mechanism in Hybrid Mg-Li Batteries with TiNb
    Maletti S; Janson O; Herzog-Arbeitman A; Gonzalez Martinez IG; Buckan R; Fischer J; Senyshyn A; Missyul A; Etter M; Mikhailova D
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6309-6321. PubMed ID: 33527829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries.
    Dong Y; Miao L; Ma G; Di S; Wang Y; Wang L; Xu J; Zhang N
    Chem Sci; 2021 Mar; 12(16):5843-5852. PubMed ID: 34168809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery.
    Shen C; Li X; Li N; Xie K; Wang JG; Liu X; Wei B
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25446-25453. PubMed ID: 29979565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Layered Ca
    Sun T; Nian Q; Zheng S; Shi J; Tao Z
    Small; 2020 Apr; 16(17):e2000597. PubMed ID: 32249537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward a High-Performance Aqueous Zinc Ion Battery: Potassium Vanadate Nanobelts and Carbon Enhanced Zinc Foil.
    Qiu N; Yang Z; Xue R; Wang Y; Zhu Y; Liu W
    Nano Lett; 2021 Apr; 21(7):2738-2744. PubMed ID: 33783214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.