BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34071577)

  • 41. Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq.
    Bajic M; Maher KA; Deal RB
    Methods Mol Biol; 2018; 1675():183-201. PubMed ID: 29052193
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA.
    Shen SY; Burgener JM; Bratman SV; De Carvalho DD
    Nat Protoc; 2019 Oct; 14(10):2749-2780. PubMed ID: 31471598
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DISMIR: Deep learning-based noninvasive cancer detection by integrating DNA sequence and methylation information of individual cell-free DNA reads.
    Li J; Wei L; Zhang X; Zhang W; Wang H; Zhong B; Xie Z; Lv H; Wang X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34245239
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The chromatin accessibility landscape of pistils and anthers in rice.
    Wang G; Li X; Shen W; Li MW; Huang M; Zhang J; Li H
    Plant Physiol; 2022 Nov; 190(4):2797-2811. PubMed ID: 36149297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CoRE-ATAC: A deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data.
    Thibodeau A; Khetan S; Eroglu A; Tewhey R; Stitzel ML; Ucar D
    PLoS Comput Biol; 2021 Dec; 17(12):e1009670. PubMed ID: 34898596
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Global Mapping of Open Chromatin Regulatory Elements by Formaldehyde-Assisted Isolation of Regulatory Elements Followed by Sequencing (FAIRE-seq).
    Bianco S; Rodrigue S; Murphy BD; Gévry N
    Methods Mol Biol; 2015; 1334():261-72. PubMed ID: 26404156
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps.
    Setty M; Leslie CS
    PLoS Comput Biol; 2015 May; 11(5):e1004271. PubMed ID: 26016777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-resolution genetic mapping of putative causal interactions between regions of open chromatin.
    Kumasaka N; Knights AJ; Gaffney DJ
    Nat Genet; 2019 Jan; 51(1):128-137. PubMed ID: 30478436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Separating the signal from the noise in metagenomic cell-free DNA sequencing.
    Burnham P; Gomez-Lopez N; Heyang M; Cheng AP; Lenz JS; Dadhania DM; Lee JR; Suthanthiran M; Romero R; De Vlaminck I
    Microbiome; 2020 Feb; 8(1):18. PubMed ID: 32046792
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-Resolution ATAC-Seq Analysis of Frozen Clinical Tissues.
    Cejas P; Long HW
    Methods Mol Biol; 2022; 2458():259-267. PubMed ID: 35103972
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-Molecule Multikilobase-Scale Profiling of Chromatin Accessibility Using m6A-SMAC-Seq and m6A-CpG-GpC-SMAC-Seq.
    Marinov GK; Shipony Z; Kundaje A; Greenleaf WJ
    Methods Mol Biol; 2022; 2458():269-298. PubMed ID: 35103973
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FinaleMe: Predicting DNA methylation by the fragmentation patterns of plasma cell-free DNA.
    Liu Y; Reed SC; Lo C; Choudhury AD; Parsons HA; Stover DG; Ha G; Gydush G; Rhoades J; Rotem D; Freeman S; Katz DW; Bandaru R; Zheng H; Fu H; Adalsteinsson VA; Kellis M
    Nat Commun; 2024 Mar; 15(1):2790. PubMed ID: 38555308
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Circulating nuclear DNA structural features, origins, and complete size profile revealed by fragmentomics.
    Sanchez C; Roch B; Mazard T; Blache P; Dache ZAA; Pastor B; Pisareva E; Tanos R; Thierry AR
    JCI Insight; 2021 Apr; 6(7):. PubMed ID: 33571170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and Application of Duplex Sequencing Strategy for Cell-Free DNA-Based Longitudinal Monitoring of Stage IV Colorectal Cancer.
    Mallampati S; Zalles S; Duose DY; Hu PC; Medeiros LJ; Wistuba II; Kopetz S; Luthra R
    J Mol Diagn; 2019 Nov; 21(6):994-1009. PubMed ID: 31401123
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A workflow for simplified analysis of ATAC-cap-seq data in R.
    Shrestha RK; Ding P; Jones JDG; MacLean D
    Gigascience; 2018 Jul; 7(7):. PubMed ID: 29961827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling fragment counts improves single-cell ATAC-seq analysis.
    Martens LD; Fischer DS; Yépez VA; Theis FJ; Gagneur J
    Nat Methods; 2024 Jan; 21(1):28-31. PubMed ID: 38049697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using combined evidence from replicates to evaluate ChIP-seq peaks.
    Jalili V; Matteucci M; Masseroli M; Morelli MJ
    Bioinformatics; 2015 Sep; 31(17):2761-9. PubMed ID: 25957351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic landscape of open chromatin in yeast.
    Lee K; Kim SC; Jung I; Kim K; Seo J; Lee HS; Bogu GK; Kim D; Lee S; Lee B; Choi JK
    PLoS Genet; 2013; 9(2):e1003229. PubMed ID: 23408895
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-wide mutational signatures in low-coverage whole genome sequencing of cell-free DNA.
    Wan JCM; Stephens D; Luo L; White JR; Stewart CM; Rousseau B; Tsui DWY; Diaz LA
    Nat Commun; 2022 Aug; 13(1):4953. PubMed ID: 35999207
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasma cell-free DNA chromosomal instability analysis by low-pass whole-genome sequencing to monitor breast cancer relapse.
    Zhou H; Wang XJ; Jiang X; Qian Z; Chen T; Hu Y; Chen ZH; Gao Y; Wang R; Ye WW; Cao WM
    Breast Cancer Res Treat; 2019 Nov; 178(1):63-73. PubMed ID: 31364001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.