BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34071634)

  • 1. Semi-Supervised Learning in Medical MRI Segmentation: Brain Tissue with White Matter Hyperintensity Segmentation Using FLAIR MRI.
    Rieu Z; Kim J; Kim RE; Lee M; Lee MK; Oh SW; Wang SM; Kim NY; Kang DW; Lim HK; Kim D
    Brain Sci; 2021 May; 11(6):. PubMed ID: 34071634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of three freely available methods for extracting white matter hyperintensities: FreeSurfer, UBO Detector, and BIANCA.
    Hotz I; Deschwanden PF; Liem F; Mérillat S; Malagurski B; Kollias S; Jäncke L
    Hum Brain Mapp; 2022 Apr; 43(5):1481-1500. PubMed ID: 34873789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging.
    Igwe KC; Lao PJ; Vorburger RS; Banerjee A; Rivera A; Chesebro A; Laing K; Manly JJ; Brickman AM
    Magn Reson Imaging; 2022 Jan; 85():71-79. PubMed ID: 34662699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of T1w-based segmentations of white matter hyperintensity volumes in large-scale datasets of aging.
    Dadar M; Maranzano J; Ducharme S; Carmichael OT; Decarli C; Collins DL;
    Hum Brain Mapp; 2018 Mar; 39(3):1093-1107. PubMed ID: 29181872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmenting white matter hyperintensities on isotropic three-dimensional Fluid Attenuated Inversion Recovery magnetic resonance images: Assessing deep learning tools on a Norwegian imaging database.
    Røvang MS; Selnes P; MacIntosh BJ; Rasmus Groote I; Pålhaugen L; Sudre C; Fladby T; Bjørnerud A
    PLoS One; 2023; 18(8):e0285683. PubMed ID: 37616243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities.
    Ling Y; Jouvent E; Cousyn L; Chabriat H; De Guio F
    Neuroinformatics; 2018 Apr; 16(2):269-281. PubMed ID: 29594711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain Atlas Guided Attention U-Net for White Matter Hyperintensity Segmentation.
    Zhang Z; Powell K; Yin C; Cao S; Gonzalez D; Hannawi Y; Zhang P
    AMIA Jt Summits Transl Sci Proc; 2021; 2021():663-671. PubMed ID: 34457182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of automated white matter hyperintensity segmentation algorithms in a multicenter cohort on cognitive impairment and dementia.
    Gaubert M; Dell'Orco A; Lange C; Garnier-Crussard A; Zimmermann I; Dyrba M; Duering M; Ziegler G; Peters O; Preis L; Priller J; Spruth EJ; Schneider A; Fliessbach K; Wiltfang J; Schott BH; Maier F; Glanz W; Buerger K; Janowitz D; Perneczky R; Rauchmann BS; Teipel S; Kilimann I; Laske C; Munk MH; Spottke A; Roy N; Dobisch L; Ewers M; Dechent P; Haynes JD; Scheffler K; Düzel E; Jessen F; Wirth M;
    Front Psychiatry; 2022; 13():1010273. PubMed ID: 36713907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
    Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A
    Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer's disease risk and aging studies.
    Ithapu V; Singh V; Lindner C; Austin BP; Hinrichs C; Carlsson CM; Bendlin BB; Johnson SC
    Hum Brain Mapp; 2014 Aug; 35(8):4219-35. PubMed ID: 24510744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Associations between cerebral blood flow and progression of white matter hyperintensity in community-dwelling adults: a longitudinal cohort study.
    Han H; Ning Z; Yang D; Yu M; Qiao H; Chen S; Chen Z; Li D; Zhang R; Liu G; Zhao X
    Quant Imaging Med Surg; 2022 Aug; 12(8):4151-4165. PubMed ID: 35919044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging.
    Dadar M; Maranzano J; Misquitta K; Anor CJ; Fonov VS; Tartaglia MC; Carmichael OT; Decarli C; Collins DL;
    Neuroimage; 2017 Aug; 157():233-249. PubMed ID: 28602597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of white matter hyperintensity severity using multimodal magnetic resonance imaging.
    Parent O; Bussy A; Devenyi GA; Dai A; Costantino M; Tullo S; Salaciak A; Bedford S; Farzin S; Béland ML; Valiquette V; Villeneuve S; Poirier J; Tardif CL; Dadar M; ; Chakravarty MM
    Brain Commun; 2023; 5(6):fcad279. PubMed ID: 37953840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An anatomical knowledge-based MRI deep learning pipeline for white matter hyperintensity quantification associated with cognitive impairment.
    Liang L; Zhou P; Lu W; Guo X; Ye C; Lv H; Wang T; Ma T
    Comput Med Imaging Graph; 2021 Apr; 89():101873. PubMed ID: 33610084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choroid plexus volume in multiple sclerosis can be estimated on structural MRI avoiding contrast injection.
    Visani V; Pizzini FB; Natale V; Tamanti A; Anglani M; Bertoldo A; Calabrese M; Castellaro M
    Eur Radiol Exp; 2024 Feb; 8(1):33. PubMed ID: 38409562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-Scanner and Inter-Scanner Reproducibility of Automatic White Matter Hyperintensities Quantification.
    Guo C; Niu K; Luo Y; Shi L; Wang Z; Zhao M; Wang D; Zhu W; Zhang H; Sun L
    Front Neurosci; 2019; 13():679. PubMed ID: 31354406
    [No Abstract]   [Full Text] [Related]  

  • 20. White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts - The MRI-GENIE study.
    Schirmer MD; Dalca AV; Sridharan R; Giese AK; Donahue KL; Nardin MJ; Mocking SJT; McIntosh EC; Frid P; Wasselius J; Cole JW; Holmegaard L; Jern C; Jimenez-Conde J; Lemmens R; Lindgren AG; Meschia JF; Roquer J; Rundek T; Sacco RL; Schmidt R; Sharma P; Slowik A; Thijs V; Woo D; Vagal A; Xu H; Kittner SJ; McArdle PF; Mitchell BD; Rosand J; Worrall BB; Wu O; Golland P; Rost NS;
    Neuroimage Clin; 2019; 23():101884. PubMed ID: 31200151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.