These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 34071732)

  • 21. Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells.
    Hur J; Park I; Lim KM; Doh J; Cho SG; Chung AJ
    ACS Nano; 2020 Nov; 14(11):15094-15106. PubMed ID: 33034446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-cell individualized electroporation with real-time impedance monitoring using a microelectrode array chip.
    Zhang Z; Zheng T; Zhu R
    Microsyst Nanoeng; 2020; 6():81. PubMed ID: 34567691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular Delivery of Nanomaterials via an Inertial Microfluidic Cell Hydroporator.
    Deng Y; Kizer M; Rada M; Sage J; Wang X; Cheon DJ; Chung AJ
    Nano Lett; 2018 Apr; 18(4):2705-2710. PubMed ID: 29569926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering.
    Kwon C; Chung AJ
    Lab Chip; 2023 Mar; 23(7):1758-1767. PubMed ID: 36727443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted Nanoneedle/Microfluidic Composite System.
    Li X; Ma Y; Xue Y; Zhang X; Lv L; Quan Q; Chen Y; Yu G; Liang Z; Zhang X; Weng D; Chen L; Chen K; Han X; Wang J
    ACS Nano; 2023 Feb; 17(3):2101-2113. PubMed ID: 36479877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in the use of microfluidic technologies for single cell analysis.
    Murphy TW; Zhang Q; Naler LB; Ma S; Lu C
    Analyst; 2017 Dec; 143(1):60-80. PubMed ID: 29170786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microtrap array on a chip for localized electroporation and electro-gene transfection.
    Muralidharan A; Pesch GR; Hubbe H; Rems L; Nouri-Goushki M; Boukany PE
    Bioelectrochemistry; 2022 Oct; 147():108197. PubMed ID: 35810498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced intracellular delivery via coordinated acoustically driven shear mechanoporation and electrophoretic insertion.
    Meacham JM; Durvasula K; Degertekin FL; Fedorov AG
    Sci Rep; 2018 Feb; 8(1):3727. PubMed ID: 29487375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HiViPore: a highly viable in-flow compression for a one-step cell mechanoporation in microfluidics to induce a free delivery of nano- macro-cargoes.
    Maremonti MI; Panzetta V; Netti PA; Causa F
    J Nanobiotechnology; 2024 Jul; 22(1):441. PubMed ID: 39068464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HeLa cell transfection using a novel sonoporation system.
    Rodamporn S; Harris NR; Beeby SP; Boltryk RJ; Sanchez-Elsner T
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):927-34. PubMed ID: 20977982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High throughput intracellular delivery by viscoelastic mechanoporation.
    Sevenler D; Toner M
    Nat Commun; 2024 Jan; 15(1):115. PubMed ID: 38167490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical Methods for Drug and Gene Delivery Through the Cell Plasma Membrane.
    Jakutavičiūtė M; Ruzgys P; Tamošiūnas M; Maciulevičius M; Šatkauskas S
    Adv Anat Embryol Cell Biol; 2017; 227():73-92. PubMed ID: 28980041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery.
    Brooks J; Minnick G; Mukherjee P; Jaberi A; Chang L; Espinosa HD; Yang R
    Small; 2020 Dec; 16(51):e2004917. PubMed ID: 33241661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanostructured Materials for Intracellular Cargo Delivery.
    Tay A; Melosh N
    Acc Chem Res; 2019 Sep; 52(9):2462-2471. PubMed ID: 31465200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophoresis-assisted single-cell electroporation for efficient intracellular delivery.
    Ionescu-Zanetti C; Blatz A; Khine M
    Biomed Microdevices; 2008 Feb; 10(1):113-6. PubMed ID: 17828458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dosage-controlled intracellular delivery mediated by acoustofluidics for lab on a chip applications.
    Salari A; Appak-Baskoy S; Coe IR; Abousawan J; Antonescu CN; Tsai SSH; Kolios MC
    Lab Chip; 2021 May; 21(9):1788-1797. PubMed ID: 33734246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Review on Electroporation-Based Intracellular Delivery.
    Shi J; Ma Y; Zhu J; Chen Y; Sun Y; Yao Y; Yang Z; Xie J
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30469344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-definition electroporation: Precise and efficient transfection on a microelectrode array.
    Duckert B; Fauvart M; Goos P; Stakenborg T; Lagae L; Braeken D
    J Control Release; 2022 Dec; 352():61-73. PubMed ID: 36208793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nano-localized single-cell nano-electroporation.
    Santra TS; Kar S; Chang HY; Tseng FG
    Lab Chip; 2020 Nov; 20(22):4194-4204. PubMed ID: 33047768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional cargo delivery into mouse and human fibroblasts using a versatile microfluidic device.
    Lam KH; Fernandez-Perez A; Schmidtke DW; Munshi NV
    Biomed Microdevices; 2018 Jun; 20(3):52. PubMed ID: 29938310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.