These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 34071732)

  • 41. Microfluidic and Nanofluidic Intracellular Delivery.
    Hur J; Chung AJ
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004595. PubMed ID: 34096197
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device.
    Valero A; Post JN; van Nieuwkasteele JW; Ter Braak PM; Kruijer W; van den Berg A
    Lab Chip; 2008 Jan; 8(1):62-7. PubMed ID: 18094762
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell membrane damage and cargo delivery in nano-electroporation.
    Pan J; Chiang CL; Wang X; Bertani P; Ma Y; Cheng J; Talesara V; Lee LJ; Lu W
    Nanoscale; 2023 Feb; 15(8):4080-4089. PubMed ID: 36744418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-throughput cell optoporation system based on Au nanoparticle layers mediated by resonant irradiation for precise and controllable gene delivery.
    Pylaev TE; Avdeeva ES; Khlebtsov BN; Lomova MV; Khlebtsov NG
    Sci Rep; 2024 Feb; 14(1):3044. PubMed ID: 38321124
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells.
    Belling JN; Heidenreich LK; Tian Z; Mendoza AM; Chiou TT; Gong Y; Chen NY; Young TD; Wattanatorn N; Park JH; Scarabelli L; Chiang N; Takahashi J; Young SG; Stieg AZ; De Oliveira S; Huang TJ; Weiss PS; Jonas SJ
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10976-10982. PubMed ID: 32358194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micro-/nano-electroporation for active gene delivery.
    Yang Z; Chang L; Chiang CL; Lee LJ
    Curr Pharm Des; 2015; 21(42):6081-8. PubMed ID: 26503150
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply.
    Wang HY; Lu C
    Biotechnol Bioeng; 2008 Jun; 100(3):579-86. PubMed ID: 18183631
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Micromachining of Polymeric Microfluidic Micro/Nanoelectroporation Device.
    Li L
    Methods Mol Biol; 2020; 2050():21-27. PubMed ID: 31468476
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-viral Gene Delivery.
    Sum CH; Shortall SM; Wong S; Wettig SD
    Exp Suppl; 2018; 110():3-68. PubMed ID: 30536226
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Micro-/nanofluidics based cell electroporation.
    Wang S; Lee LJ
    Biomicrofluidics; 2013 Jan; 7(1):11301. PubMed ID: 23405056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic approaches for gene delivery and gene therapy.
    Kim J; Hwang I; Britain D; Chung TD; Sun Y; Kim DH
    Lab Chip; 2011 Dec; 11(23):3941-8. PubMed ID: 22027752
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Benefits of Going Small: Nanostructures for Mammalian Cell Transfection.
    Tay A
    ACS Nano; 2020 Jul; 14(7):7714-7721. PubMed ID: 32631053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications.
    Hamann A; Nguyen A; Pannier AK
    J Biol Eng; 2019; 13():7. PubMed ID: 30675180
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single cell transfection of human-induced pluripotent stem cells using a droplet-based microfluidic system.
    Pérez-Sosa C; Sanluis-Verdes A; Waisman A; Lombardi A; Rosero G; Greca A; Bhansali S; Bourguignon N; Luzzani C; Pérez MS; Miriuka S; Lerner B
    R Soc Open Sci; 2022 Jan; 9(1):211510. PubMed ID: 35242349
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel opto-fluidic drug delivery system for efficient cellular transfection.
    Layachi M; Treizebré A; Hay L; Gilbert D; Pesez J; D'Acremont Q; Braeckmans K; Thommen Q; Courtade E
    J Nanobiotechnology; 2023 Feb; 21(1):43. PubMed ID: 36747263
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy.
    Tavakoli H; Zhou W; Ma L; Perez S; Ibarra A; Xu F; Zhan S; Li X
    Trends Analyt Chem; 2019 Aug; 117():13-26. PubMed ID: 32831435
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Methods of substances and organelles introduction in living cell for cell engineering technologies].
    Nikitin VA
    Tsitologiia; 2007; 49(8):631-41. PubMed ID: 17926558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfabricated analytical systems for integrated cancer cytomics.
    Wlodkowic D; Cooper JM
    Anal Bioanal Chem; 2010 Sep; 398(1):193-209. PubMed ID: 20419489
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A High-Throughput Microdroplet-Based Single Cell Transfection Method for Gene Knockout Based on the CRISPR/Cas9 System.
    Sun J; Jiao Y; Pan F; Cheng SH; Sun D
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):378-388. PubMed ID: 38442045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.