These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 34071822)
1. Dramatic Increases in Telehealth-Related Tweets during the Early COVID-19 Pandemic: A Sentiment Analysis. Champagne-Langabeer T; Swank MW; Manas S; Si Y; Roberts K Healthcare (Basel); 2021 May; 9(6):. PubMed ID: 34071822 [TBL] [Abstract][Full Text] [Related]
2. Uncovering the Reasons Behind COVID-19 Vaccine Hesitancy in Serbia: Sentiment-Based Topic Modeling. Ljajić A; Prodanović N; Medvecki D; Bašaragin B; Mitrović J J Med Internet Res; 2022 Nov; 24(11):e42261. PubMed ID: 36301673 [TBL] [Abstract][Full Text] [Related]
3. Language and Sentiment Regarding Telemedicine and COVID-19 on Twitter: Longitudinal Infodemiology Study. Pollack CC; Gilbert-Diamond D; Alford-Teaster JA; Onega T J Med Internet Res; 2021 Jun; 23(6):e28648. PubMed ID: 34086591 [TBL] [Abstract][Full Text] [Related]
4. Sentiment Analysis of Insomnia-Related Tweets via a Combination of Transformers Using Dempster-Shafer Theory: Pre- and Peri-COVID-19 Pandemic Retrospective Study. Maghsoudi A; Nowakowski S; Agrawal R; Sharafkhaneh A; Kunik ME; Naik AD; Xu H; Razjouyan J J Med Internet Res; 2022 Dec; 24(12):e41517. PubMed ID: 36417585 [TBL] [Abstract][Full Text] [Related]
5. "When 'Bad' is 'Good'": Identifying Personal Communication and Sentiment in Drug-Related Tweets. Daniulaityte R; Chen L; Lamy FR; Carlson RG; Thirunarayan K; Sheth A JMIR Public Health Surveill; 2016 Oct; 2(2):e162. PubMed ID: 27777215 [TBL] [Abstract][Full Text] [Related]
6. Using Natural Language Processing to Explore Mental Health Insights From UK Tweets During the COVID-19 Pandemic: Infodemiology Study. Marshall C; Lanyi K; Green R; Wilkins GC; Pearson F; Craig D JMIR Infodemiology; 2022; 2(1):e32449. PubMed ID: 36406146 [TBL] [Abstract][Full Text] [Related]
7. A BERT Framework to Sentiment Analysis of Tweets. Bello A; Ng SC; Leung MF Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617101 [TBL] [Abstract][Full Text] [Related]
8. Increased Online Aggression During COVID-19 Lockdowns: Two-Stage Study of Deep Text Mining and Difference-in-Differences Analysis. Hsu JT; Tsai RT J Med Internet Res; 2022 Aug; 24(8):e38776. PubMed ID: 35943771 [TBL] [Abstract][Full Text] [Related]
9. Online Influence and Sentiment of Fitness Tweets: Analysis of Two Million Fitness Tweets. Vickey T; Breslin JG JMIR Public Health Surveill; 2017 Oct; 3(4):e82. PubMed ID: 29089294 [TBL] [Abstract][Full Text] [Related]
10. A novel COVID-19 sentiment analysis in Turkish based on the combination of convolutional neural network and bidirectional long-short term memory on Twitter. Kabakus AT Concurr Comput; 2022 Oct; 34(22):e6883. PubMed ID: 35539003 [TBL] [Abstract][Full Text] [Related]
11. How do Twitter users feel about telehealth? A mixed-methods analysis of experiences, perceptions and expectations. Sazon H; Catapan SC; Rahimi A; Canfell OJ; Kelly J Health Expect; 2024 Feb; 27(1):e13927. PubMed ID: 38038231 [TBL] [Abstract][Full Text] [Related]
12. Public Perceptions around mHealth Applications during COVID-19 Pandemic: A Network and Sentiment Analysis of Tweets in Saudi Arabia. Binkheder S; Aldekhyyel RN; AlMogbel A; Al-Twairesh N; Alhumaid N; Aldekhyyel SN; Jamal AA Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948997 [TBL] [Abstract][Full Text] [Related]
13. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study. Chandrasekaran R; Mehta V; Valkunde T; Moustakas E J Med Internet Res; 2020 Oct; 22(10):e22624. PubMed ID: 33006937 [TBL] [Abstract][Full Text] [Related]
14. Social Network Analysis of COVID-19 Sentiments: Application of Artificial Intelligence. Hung M; Lauren E; Hon ES; Birmingham WC; Xu J; Su S; Hon SD; Park J; Dang P; Lipsky MS J Med Internet Res; 2020 Aug; 22(8):e22590. PubMed ID: 32750001 [TBL] [Abstract][Full Text] [Related]
15. An "Infodemic": Leveraging High-Volume Twitter Data to Understand Early Public Sentiment for the Coronavirus Disease 2019 Outbreak. Medford RJ; Saleh SN; Sumarsono A; Perl TM; Lehmann CU Open Forum Infect Dis; 2020 Jul; 7(7):ofaa258. PubMed ID: 33117854 [TBL] [Abstract][Full Text] [Related]
16. Identifying Sentiment of Hookah-Related Posts on Twitter. Allem JP; Ramanujam J; Lerman K; Chu KH; Boley Cruz T; Unger JB JMIR Public Health Surveill; 2017 Oct; 3(4):e74. PubMed ID: 29046267 [TBL] [Abstract][Full Text] [Related]
17. Consumer perceptions of telehealth for mental health or substance abuse: a Twitter-based topic modeling analysis. Baird A; Xia Y; Cheng Y JAMIA Open; 2022 Jul; 5(2):ooac028. PubMed ID: 35495736 [TBL] [Abstract][Full Text] [Related]
18. Public Opinions towards COVID-19 in California and New York on Twitter. Wang X; Zou C; Xie Z; Li D medRxiv; 2020 Jul; ():. PubMed ID: 32699856 [TBL] [Abstract][Full Text] [Related]
19. Perceptions of Life Support and Advance Care Planning During the COVID-19 Pandemic: A Global Study of Twitter Users. Patel VR; Gereta S; Blanton CJ; Chu AL; Patel AP; Mackert M; Zientek D; Nortjé N; Khurshid A; Moriates C; Wallingford G Chest; 2022 Jun; 161(6):1609-1619. PubMed ID: 35077706 [TBL] [Abstract][Full Text] [Related]
20. Social Media Data Analytics on Telehealth During the COVID-19 Pandemic. Massaad E; Cherfan P Cureus; 2020 Apr; 12(4):e7838. PubMed ID: 32467813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]