BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34071960)

  • 21. The Trade-Off of Virtual Reality Training for Dart Throwing: A Facilitation of Perceptual-Motor Learning With a Detriment to Performance.
    Drew SA; Awad MF; Armendariz JA; Gabay B; Lachica IJ; Hinkel-Lipsker JW
    Front Sports Act Living; 2020; 2():59. PubMed ID: 33345050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully Immersive Virtual Reality for Total Hip Arthroplasty: Objective Measurement of Skills and Transfer of Visuospatial Performance After a Competency-Based Simulation Curriculum.
    Logishetty K; Gofton WT; Rudran B; Beaulé PE; Cobb JP
    J Bone Joint Surg Am; 2020 Mar; 102(6):e27. PubMed ID: 31929324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of virtual simulation technology in sports decision training: a systematic review.
    Yunchao M; Mengyao R; Xingman L
    Front Psychol; 2023; 14():1164117. PubMed ID: 37275736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A virtual reality approach identifies flexible inhibition of motion aftereffects induced by head rotation.
    Bai J; Bao M; Zhang T; Jiang Y
    Behav Res Methods; 2019 Feb; 51(1):96-107. PubMed ID: 30187432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation.
    Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T
    Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using 360° virtual reality as a decision-making assessment tool in sport.
    Kittel A; Larkin P; Elsworthy N; Spittle M
    J Sci Med Sport; 2019 Sep; 22(9):1049-1053. PubMed ID: 30987883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [What do virtual reality tools bring to child and adolescent psychiatry?].
    Bioulac S; de Sevin E; Sagaspe P; Claret A; Philip P; Micoulaud-Franchi JA; Bouvard MP
    Encephale; 2018 Jun; 44(3):280-285. PubMed ID: 28870688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using Blur for Perceptual Investigation and Training in Sport? A Clear Picture of the Evidence and Implications for Future Research.
    Limballe A; Kulpa R; Bennett S
    Front Psychol; 2021; 12():752582. PubMed ID: 35308077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perceptual uncertainty and action consequences independently affect hand movements in a virtual environment.
    Giesel M; Nowakowska A; Harris JM; Hesse C
    Sci Rep; 2020 Dec; 10(1):22307. PubMed ID: 33339859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microsaccades: Empirical Research and Methodological Advances - Introduction to Part 1 of the Thematic Special Issue.
    Martinez-Conde S; Engbert R; Groner R
    J Eye Mov Res; 2020 Jun; 12(6):. PubMed ID: 33828747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of the cervical spine mobility by immersive and non-immersive virtual reality.
    Kiper P; Baba A; Alhelou M; Pregnolato G; Maistrello L; Agostini M; Turolla A
    J Electromyogr Kinesiol; 2020 Apr; 51():102397. PubMed ID: 32018174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor learning and transfer between real and virtual environments in young people with autism spectrum disorder: A prospective randomized cross over controlled trial.
    de Moraes ÍAP; Monteiro CBM; Silva TDD; Massetti T; Crocetta TB; de Menezes LDC; Andrade GPR; Ré AHN; Dawes H; Coe S; Magalhães FH
    Autism Res; 2020 Feb; 13(2):307-319. PubMed ID: 31566888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Commercial head-mounted display virtual reality for upper extremity rehabilitation in chronic stroke: a single-case design study.
    Erhardsson M; Alt Murphy M; Sunnerhagen KS
    J Neuroeng Rehabil; 2020 Nov; 17(1):154. PubMed ID: 33228710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine Learning and Virtual Reality on Body Movements' Behaviors to Classify Children with Autism Spectrum Disorder.
    Alcañiz Raya M; Marín-Morales J; Minissi ME; Teruel Garcia G; Abad L; Chicchi Giglioli IA
    J Clin Med; 2020 Apr; 9(5):. PubMed ID: 32357517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review of training research and virtual reality simulators for the da Vinci surgical system.
    Liu M; Curet M
    Teach Learn Med; 2015; 27(1):12-26. PubMed ID: 25584468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modified perceptual training in sport: A new classification framework.
    Hadlow SM; Panchuk D; Mann DL; Portus MR; Abernethy B
    J Sci Med Sport; 2018 Sep; 21(9):950-958. PubMed ID: 29433921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visuomotor adaptation in head-mounted virtual reality versus conventional training.
    Anglin JM; Sugiyama T; Liew SL
    Sci Rep; 2017 Apr; 7():45469. PubMed ID: 28374808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and development of virtual reality based perceptual-motor rehabilitation scenarios.
    Rizzo AA; Cohen I; Weiss PL; Kim JG; Yeh SC; Zali B; Hwang J
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4852-5. PubMed ID: 17271398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial cognition in a virtual reality home-cage extension for freely moving rodents.
    Kaupert U; Thurley K; Frei K; Bagorda F; Schatz A; Tocker G; Rapoport S; Derdikman D; Winter Y
    J Neurophysiol; 2017 Apr; 117(4):1736-1748. PubMed ID: 28077665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of virtual reality head mounted display for investigation of movement: a novel effect of orientation of attention.
    Quinlivan B; Butler JS; Beiser I; Williams L; McGovern E; O'Riordan S; Hutchinson M; Reilly RB
    J Neural Eng; 2016 Oct; 13(5):056006. PubMed ID: 27518212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.