BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34071965)

  • 1. An Editing-Site-Specific PCR Method for Detection and Quantification of
    Zhang H; Li J; Zhao S; Yan X; Si N; Gao H; Li Y; Zhai S; Xiao F; Wu G; Wu Y
    Foods; 2021 May; 10(6):. PubMed ID: 34071965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Real-Time Quantitative PCR Method Specific for Detection and Quantification of the First Commercialized Genome-Edited Plant.
    Chhalliyil P; Ilves H; Kazakov SA; Howard SJ; Johnston BH; Fagan J
    Foods; 2020 Sep; 9(9):. PubMed ID: 32906573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H
    Wu TM; Huang JZ; Oung HM; Hsu YT; Tsai YC; Hong CY
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31404948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal LNA Probe-Mediated Multiplex Droplet Digital Polymerase Chain Reaction for Ultrasensitive and Accurate Quantitative Analysis of Genetically Modified Organisms.
    Yang L; Chen Y; Li R; Xu W; Cui J; Zhang D; Zhang X
    J Agric Food Chem; 2021 Feb; 69(5):1705-1713. PubMed ID: 33528262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Edited Plants: Opportunities and Challenges for an Anticipatory Detection and Identification Framework.
    Ribarits A; Eckerstorfer M; Simon S; Stepanek W
    Foods; 2021 Feb; 10(2):. PubMed ID: 33669278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Detection and Evaluation of the Gene-Editing Frequency in Plants Using Droplet Digital PCR.
    Peng C; Zheng M; Ding L; Chen X; Wang X; Feng X; Wang J; Xu J
    Front Plant Sci; 2020; 11():610790. PubMed ID: 33381141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.
    Salvi S; D'Orso F; Morelli G
    J Agric Food Chem; 2008 Jun; 56(12):4320-7. PubMed ID: 18494480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Regulatory framework of genome-edited products - a review].
    Yan Y; Zhu J; Xie C; Liu C
    Sheng Wu Gong Cheng Xue Bao; 2019 Jun; 35(6):921-930. PubMed ID: 31231990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement.
    Das A; Ghana P; Rudrappa B; Gandhi R; Tavva VS; Mohanty A
    Methods Mol Biol; 2021; 2238():115-134. PubMed ID: 33471328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice.
    Li T; Liu B; Chen CY; Yang B
    J Genet Genomics; 2016 May; 43(5):297-305. PubMed ID: 27180265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing methods of detection and quantitation of RNA editing of rat glycine receptor alpha3.
    Nakae A; Tanaka T; Miyake K; Hase M; Mashimo T
    Int J Biol Sci; 2008; 4(6):397-405. PubMed ID: 18974845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system.
    Yu K; Liu Z; Gui H; Geng L; Wei J; Liang D; Lv J; Xu J; Chen X
    BMC Plant Biol; 2021 Apr; 21(1):197. PubMed ID: 33894749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of genome-edited cells by oligoribonucleotide interference-PCR.
    Fujita T; Yuno M; Kitaura F; Fujii H
    DNA Res; 2018 Aug; 25(4):395-407. PubMed ID: 29718217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An In Vivo Targeted Deletion of the Calmodulin-Binding Domain from Rice Glutamate Decarboxylase 3 (OsGAD3) Increases γ-Aminobutyric Acid Content in Grains.
    Akama K; Akter N; Endo H; Kanesaki M; Endo M; Toki S
    Rice (N Y); 2020 Mar; 13(1):20. PubMed ID: 32180062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolving landscape around genome editing in agriculture: Many countries have exempted or move to exempt forms of genome editing from GMO regulation of crop plants.
    Schmidt SM; Belisle M; Frommer WB
    EMBO Rep; 2020 Jun; 21(6):e50680. PubMed ID: 32431018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice].
    Xin GW; Hu XX; Wang KJ; Wang XC
    Yi Chuan; 2018 Dec; 40(12):1112-1119. PubMed ID: 30559100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical points of DNA quantification by real-time PCR--effects of DNA extraction method and sample matrix on quantification of genetically modified organisms.
    Cankar K; Stebih D; Dreo T; Zel J; Gruden K
    BMC Biotechnol; 2006 Aug; 6():37. PubMed ID: 16907967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening.
    Niu C; Xu Y; Zhang C; Zhu P; Huang K; Luo Y; Xu W
    Anal Chem; 2018 May; 90(9):5586-5593. PubMed ID: 29652133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.