These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34072020)

  • 21. A rice bran polyphenol, cycloartenyl ferulate, elicits apoptosis in human colorectal adenocarcinoma SW480 and sensitizes metastatic SW620 cells to TRAIL-induced apoptosis.
    Kong CK; Lam WS; Chiu LC; Ooi VE; Sun SS; Wong YS
    Biochem Pharmacol; 2009 May; 77(9):1487-96. PubMed ID: 19426686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Novel Wick-Like Paper-Based Microfluidic Device for 3D Cell Culture and Anti-Cancer Drugs Screening.
    Fu SX; Zuo P; Ye BC
    Biotechnol J; 2021 Feb; 16(2):e2000126. PubMed ID: 33460221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A magnetically controlled microfluidic device for concentration dependent
    Yadav VK; Ganguly P; Mishra P; Das S; Mallick D
    Lab Chip; 2023 Sep; 23(19):4352-4365. PubMed ID: 37712390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.
    Somaweera H; Haputhanthri SO; Ibraguimov A; Pappas D
    Analyst; 2015 Aug; 140(15):5029-38. PubMed ID: 26050759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in Microfluidics-Based Technologies for Single Cell Culture.
    García Alonso D; Yu M; Qu H; Ma L; Shen F
    Adv Biosyst; 2019 Nov; 3(11):e1900003. PubMed ID: 32648694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform.
    Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J
    Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic-enabled self-organized tumor model for in vitro cytotoxicity assessment of doxorubicin.
    Yang Y; Liu S; Chen C; Huang H; Tao L; Qian Z; Li W
    Biomed Microdevices; 2020 Sep; 22(4):70. PubMed ID: 32960346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Curcumin Inhibits Cell Viability and Increases Apoptosis of SW620 Human Colon Adenocarcinoma Cells via the Caudal Type Homeobox-2 (CDX2)/Wnt/β-Catenin Pathway.
    Jiang X; Li S; Qiu X; Cong J; Zhou J; Miu W
    Med Sci Monit; 2019 Oct; 25():7451-7458. PubMed ID: 31584928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microfluidic gradient device for drug screening with human iPSC-derived motoneurons.
    Mo SJ; Lee JH; Kye HG; Lee JM; Kim EJ; Geum D; Sun W; Chung BG
    Analyst; 2020 Apr; 145(8):3081-3089. PubMed ID: 32150196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform.
    Ruppen J; Wildhaber FD; Strub C; Hall SR; Schmid RA; Geiser T; Guenat OT
    Lab Chip; 2015 Jul; 15(14):3076-85. PubMed ID: 26088102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer.
    Li L; Ahmed B; Mehta K; Kurzrock R
    Mol Cancer Ther; 2007 Apr; 6(4):1276-82. PubMed ID: 17431105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug testing of monodisperse arrays of live microdissected tumors using a valved multiwell microfluidic platform.
    Lockhart EJ; Horowitz LF; Rodríguez A; Zhu S; Nguyen T; Mehrabi M; Gujral TS; Folch A
    Lab Chip; 2024 May; 24(10):2683-2699. PubMed ID: 38651213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Microfluidic cell culture array chip for drug screening assays].
    Zheng Y; Wu J; Shao J; Jin Q; Zhao J
    Sheng Wu Gong Cheng Xue Bao; 2009 May; 25(5):779-85. PubMed ID: 19670650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resveratrol Chemosensitizes TNF-β-Induced Survival of 5-FU-Treated Colorectal Cancer Cells.
    Buhrmann C; Yazdi M; Popper B; Shayan P; Goel A; Aggarwal BB; Shakibaei M
    Nutrients; 2018 Jul; 10(7):. PubMed ID: 30002278
    [No Abstract]   [Full Text] [Related]  

  • 39. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology.
    Barata D; Spennati G; Correia C; Ribeiro N; Harink B; van Blitterswijk C; Habibovic P; van Rijt S
    Biomed Microdevices; 2017 Sep; 19(4):81. PubMed ID: 28884359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin.
    Friedrich RB; Kann B; Coradini K; Offerhaus HL; Beck RC; Windbergs M
    Eur J Pharm Sci; 2015 Oct; 78():204-13. PubMed ID: 26215463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.