These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 34072085)
1. Direct and Indirect Biomimetic Peptide Modification of Alginate: Efficiency, Side Reactions, and Cell Response. Golunova A; Velychkivska N; Mikšovská Z; Chochola V; Jaroš J; Hampl A; Pop-Georgievski O; Proks V Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072085 [TBL] [Abstract][Full Text] [Related]
2. Copper-Free Azide-Alkyne Cycloaddition for Peptide Modification of Alginate Hydrogels. Jain E; Neal S; Graf H; Tan X; Balasubramaniam R; Huebsch N ACS Appl Bio Mater; 2021 Feb; 4(2):1229-1237. PubMed ID: 35014476 [TBL] [Abstract][Full Text] [Related]
3. Alginate modification via click chemistry for biomedical applications. Deng Y; Shavandi A; Okoro OV; Nie L Carbohydr Polym; 2021 Oct; 270():118360. PubMed ID: 34364605 [TBL] [Abstract][Full Text] [Related]
4. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering. Luo Z; Yang Y; Deng Y; Sun Y; Yang H; Wei S Colloids Surf B Biointerfaces; 2016 Jul; 143():243-251. PubMed ID: 27022863 [TBL] [Abstract][Full Text] [Related]
5. Osteostimulation scaffolds of stem cells: BMP-7-derived peptide-decorated alginate porous scaffolds promote the aggregation and osteo-differentiation of human mesenchymal stem cells. Yang Y; Luo Z; Zhao Y Biopolymers; 2018 Jul; 109(7):e23223. PubMed ID: 29732529 [TBL] [Abstract][Full Text] [Related]
6. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering. Wang Y; Wang X; Shi J; Zhu R; Zhang J; Zhang Z; Ma D; Hou Y; Lin F; Yang J; Mizuno M Sci Rep; 2016 Dec; 6():39477. PubMed ID: 27996001 [TBL] [Abstract][Full Text] [Related]
7. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment. Amir Afshar H; Ghaee A Carbohydr Polym; 2016 Oct; 151():1120-1131. PubMed ID: 27474663 [TBL] [Abstract][Full Text] [Related]
8. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. Sandvig I; Karstensen K; Rokstad AM; Aachmann FL; Formo K; Sandvig A; Skjåk-Bræk G; Strand BL J Biomed Mater Res A; 2015 Mar; 103(3):896-906. PubMed ID: 24826938 [TBL] [Abstract][Full Text] [Related]
9. In situ crosslinkable multi-functional and cell-responsive alginate 3D matrix via thiol-maleimide click chemistry. Magalhães MV; Débera N; Pereira RF; Neves MI; Barrias CC; Bidarra SJ Carbohydr Polym; 2024 Aug; 337():122144. PubMed ID: 38710569 [TBL] [Abstract][Full Text] [Related]
10. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Gao X; Zhang X; Song J; Xu X; Xu A; Wang M; Xie B; Huang E; Deng F; Wei S Int J Nanomedicine; 2015; 10():7109-28. PubMed ID: 26604759 [TBL] [Abstract][Full Text] [Related]
11. Introduction of N-cadherin-binding motif to alginate hydrogels for controlled stem cell differentiation. Lee JW; An H; Lee KY Colloids Surf B Biointerfaces; 2017 Jul; 155():229-237. PubMed ID: 28432956 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055 [TBL] [Abstract][Full Text] [Related]
13. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture. Ning L; Xu Y; Chen X; Schreyer DJ J Biomater Sci Polym Ed; 2016 Jun; 27(9):898-915. PubMed ID: 27012482 [TBL] [Abstract][Full Text] [Related]
14. Effect of cross-linkers in fabrication of carrageenan-alginate matrices for tissue engineering application. Ki SB; Singh D; Kim SC; Son TW; Han SS Biotechnol Appl Biochem; 2013; 60(6):589-95. PubMed ID: 23668797 [TBL] [Abstract][Full Text] [Related]
15. Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response. Sreejalekshmi KG; Nair PD J Biomed Mater Res A; 2011 Feb; 96(2):477-91. PubMed ID: 21171167 [TBL] [Abstract][Full Text] [Related]
16. In vitro mimicking the morphology of hepatic lobule tissue based on Ca-alginate cell sheets. Liu Z; Lu M; Takeuchi M; Yue T; Hasegawa Y; Huang Q; Fukuda T Biomed Mater; 2018 Feb; 13(3):035004. PubMed ID: 29295968 [TBL] [Abstract][Full Text] [Related]
17. Advantages of agarose on alginate for the preparation of polysaccharide/hydroxyapatite porous bone scaffolds compatible with a proline-rich antimicrobial peptide. Mardirossian M; Gruppuso M; Guagnini B; Mihalić F; Turco G; Porrelli D Biomed Mater; 2023 Oct; 18(6):. PubMed ID: 37827164 [TBL] [Abstract][Full Text] [Related]
18. Perfusion culture enhanced human endometrial stromal cell growth in alginate-multivalent integrin α5β1 ligand scaffolds. Li Z; Kreiner M; Edrada-Ebel R; Cui Z; van der Walle CF; Mardon HJ J Biomed Mater Res A; 2011 Nov; 99(2):211-20. PubMed ID: 21976446 [TBL] [Abstract][Full Text] [Related]
19. TATVHL peptide-grafted alginate/poly(γ-glutamic acid) scaffolds with inverted colloidal crystal topology for neuronal differentiation of iPS cells. Kuo YC; Chung CY Biomaterials; 2012 Dec; 33(35):8955-66. PubMed ID: 22998813 [TBL] [Abstract][Full Text] [Related]
20. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles. Yu G; Fan Y J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]