BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34072085)

  • 1. Direct and Indirect Biomimetic Peptide Modification of Alginate: Efficiency, Side Reactions, and Cell Response.
    Golunova A; Velychkivska N; Mikšovská Z; Chochola V; Jaroš J; Hampl A; Pop-Georgievski O; Proks V
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-Free Azide-Alkyne Cycloaddition for Peptide Modification of Alginate Hydrogels.
    Jain E; Neal S; Graf H; Tan X; Balasubramaniam R; Huebsch N
    ACS Appl Bio Mater; 2021 Feb; 4(2):1229-1237. PubMed ID: 35014476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alginate modification via click chemistry for biomedical applications.
    Deng Y; Shavandi A; Okoro OV; Nie L
    Carbohydr Polym; 2021 Oct; 270():118360. PubMed ID: 34364605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering.
    Luo Z; Yang Y; Deng Y; Sun Y; Yang H; Wei S
    Colloids Surf B Biointerfaces; 2016 Jul; 143():243-251. PubMed ID: 27022863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteostimulation scaffolds of stem cells: BMP-7-derived peptide-decorated alginate porous scaffolds promote the aggregation and osteo-differentiation of human mesenchymal stem cells.
    Yang Y; Luo Z; Zhao Y
    Biopolymers; 2018 Jul; 109(7):e23223. PubMed ID: 29732529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering.
    Wang Y; Wang X; Shi J; Zhu R; Zhang J; Zhang Z; Ma D; Hou Y; Lin F; Yang J; Mizuno M
    Sci Rep; 2016 Dec; 6():39477. PubMed ID: 27996001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.
    Amir Afshar H; Ghaee A
    Carbohydr Polym; 2016 Oct; 151():1120-1131. PubMed ID: 27474663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications.
    Sandvig I; Karstensen K; Rokstad AM; Aachmann FL; Formo K; Sandvig A; Skjåk-Bræk G; Strand BL
    J Biomed Mater Res A; 2015 Mar; 103(3):896-906. PubMed ID: 24826938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A
    J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.
    Gao X; Zhang X; Song J; Xu X; Xu A; Wang M; Xie B; Huang E; Deng F; Wei S
    Int J Nanomedicine; 2015; 10():7109-28. PubMed ID: 26604759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of N-cadherin-binding motif to alginate hydrogels for controlled stem cell differentiation.
    Lee JW; An H; Lee KY
    Colloids Surf B Biointerfaces; 2017 Jul; 155():229-237. PubMed ID: 28432956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture.
    Ning L; Xu Y; Chen X; Schreyer DJ
    J Biomater Sci Polym Ed; 2016 Jun; 27(9):898-915. PubMed ID: 27012482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cross-linkers in fabrication of carrageenan-alginate matrices for tissue engineering application.
    Ki SB; Singh D; Kim SC; Son TW; Han SS
    Biotechnol Appl Biochem; 2013; 60(6):589-95. PubMed ID: 23668797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response.
    Sreejalekshmi KG; Nair PD
    J Biomed Mater Res A; 2011 Feb; 96(2):477-91. PubMed ID: 21171167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles.
    Yu G; Fan Y
    J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro mimicking the morphology of hepatic lobule tissue based on Ca-alginate cell sheets.
    Liu Z; Lu M; Takeuchi M; Yue T; Hasegawa Y; Huang Q; Fukuda T
    Biomed Mater; 2018 Feb; 13(3):035004. PubMed ID: 29295968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TATVHL peptide-grafted alginate/poly(γ-glutamic acid) scaffolds with inverted colloidal crystal topology for neuronal differentiation of iPS cells.
    Kuo YC; Chung CY
    Biomaterials; 2012 Dec; 33(35):8955-66. PubMed ID: 22998813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of a suturable biomimetic patch for cardiac applications.
    Rosellini E; Lazzeri L; Maltinti S; Vanni F; Barbani N; Cascone MG
    J Mater Sci Mater Med; 2019 Nov; 30(11):126. PubMed ID: 31728643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration.
    Sapir Y; Kryukov O; Cohen S
    Biomaterials; 2011 Mar; 32(7):1838-47. PubMed ID: 21112626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyramine-conjugated alginate hydrogels as a platform for bioactive scaffolds.
    Schulz A; Gepp MM; Stracke F; von Briesen H; Neubauer JC; Zimmermann H
    J Biomed Mater Res A; 2019 Jan; 107(1):114-121. PubMed ID: 30256518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.