These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34072385)

  • 1. Dry Film Resist Laminated Microfluidic System for Electrical Impedance Measurements.
    Cao Y; Floehr J; Ingebrandt S; Schnakenberg U
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34072385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Multilayer Molds by Dry Film Photoresist.
    Koucherian NE; Yan S; Hui EE
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence.
    Pereira FM; Bernacka-Wojcik I; Ribeiro RSR; Lobato MT; Fortunato E; Martins R; Igreja R; Jorge PAS; Águas H; Oliva AMG
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications.
    Kumar M; Yadav S; Kumar A; Sharma NN; Akhtar J; Singh K
    Biosens Bioelectron; 2019 Oct; 142():111526. PubMed ID: 31362203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study on fabrication techniques for on-chip microelectrodes.
    Temiz Y; Ferretti A; Leblebici Y; Guiducci C
    Lab Chip; 2012 Nov; 12(22):4920-8. PubMed ID: 23042440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Prototyping of Soft Lithography Masters for Microfluidic Devices Using Dry Film Photoresist in a Non-Cleanroom Setting.
    Mukherjee P; Nebuloni F; Gao H; Zhou J; Papautsky I
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30875965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic device for trapping and monitoring three dimensional multicell spheroids using electrical impedance spectroscopy.
    Luongo K; Holton A; Kaushik A; Spence P; Ng B; Deschenes R; Sundaram S; Bhansali S
    Biomicrofluidics; 2013; 7(3):34108. PubMed ID: 24404028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new floating electrode structure for generating homogeneous electrical fields in microfluidic channels.
    Segerink LI; Sprenkels AJ; Bomer JG; Vermes I; van den Berg A
    Lab Chip; 2011 Jun; 11(12):1995-2001. PubMed ID: 21279234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex three-dimensional high aspect ratio microfluidic network manufactured in combined PerMX dry-resist and SU-8 technology.
    Meier RCh; Badilita V; Brunne J; Wallrabe U; Korvink JG
    Biomicrofluidics; 2011 Sep; 5(3):34111-3411110. PubMed ID: 22662038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfabrication Process Development for a Polymer-Based Lab-on-Chip Concept Applied in Attenuated Total Reflection Fourier Transform Infrared Spectroelectrochemistry.
    Atkinson N; Morhart TA; Wells G; Flaman GT; Petro E; Read S; Rosendahl SM; Burgess IJ; Achenbach S
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer.
    Barat D; Spencer D; Benazzi G; Mowlem MC; Morgan H
    Lab Chip; 2012 Jan; 12(1):118-26. PubMed ID: 22051732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry Film Photoresist-based Electrochemical Microfluidic Biosensor Platform: Device Fabrication, On-chip Assay Preparation, and System Operation.
    Bruch R; Kling A; Urban GA; Dincer C
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the Electrical Contact Performance for Amorphous Wire Magnetic Sensor by Employing MEMS Process.
    Chen Y; Li J; Chen J; Xu L
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic device for cell capture and impedance measurement.
    Jang LS; Wang MH
    Biomed Microdevices; 2007 Oct; 9(5):737-43. PubMed ID: 17508285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical measurement of red blood cells by laboratory on print circuit board chip.
    Zhao Y; Zhang W
    Electrophoresis; 2018 Apr; ():. PubMed ID: 29682769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic Properties of Zona Pellucida of Oocytes Characterized by Transient Electrical Impedance Spectroscopy.
    Azarkh D; Cao Y; Floehr J; Schnakenberg U
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabricated thin film impedance sensor & AC impedance measurements.
    Yu J; Liu CC
    Sensors (Basel); 2010; 10(6):5845-58. PubMed ID: 22219690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo and Soft Lithography for Organ-on-Chip Applications.
    Ferrari E; Nebuloni F; Rasponi M; Occhetta P
    Methods Mol Biol; 2022; 2373():1-19. PubMed ID: 34520003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.