These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 34072489)
41. Characterization and Tribological Performances of Graphene and Fluorinated Graphene Particles in PAO. Chen Y; Hu E; Zhong H; Wang J; Subedi A; Hu K; Hu X Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443954 [TBL] [Abstract][Full Text] [Related]
42. Study on Tribological Properties and Mechanisms of Different Morphology WS Hu N; Zhang X; Wang X; Wu N; Wang S Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32224989 [TBL] [Abstract][Full Text] [Related]
43. Ultralow Friction of Steel Surfaces Using a 1,3-Diketone Lubricant in the Thin Film Lubrication Regime. Li K; Amann T; List M; Walter M; Moseler M; Kailer A; Rühe J Langmuir; 2015 Oct; 31(40):11033-9. PubMed ID: 26267214 [TBL] [Abstract][Full Text] [Related]
44. Synthesis of Polymer-Grafted Carbon Dots Serving as Multifunctional Lubricant Additives with Excellent Tribological Performance and Additional Rust Resistance Function for Steel/Steel Contact. Chen Q; Yao L; Li X; Wang B; Wang J Langmuir; 2023 Oct; 39(40):14374-14383. PubMed ID: 37774103 [TBL] [Abstract][Full Text] [Related]
45. The Tribological Properties of Novel Sulfoximine Derivatives as Lubricant Additives. Zhang J; Zhang C; Liu Y; Feng L; Yang W; Pei X; Yu Q Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203323 [TBL] [Abstract][Full Text] [Related]
46. Empirical investigation of the effect of adding nanoparticles to HB-80 gas turbine oil: Evaluation of thermophysical behaviors. Karimi S; Meghdadi Isfahani AH; Afrand M; Akbari M Heliyon; 2024 Apr; 10(8):e29759. PubMed ID: 38681638 [TBL] [Abstract][Full Text] [Related]
47. Ionic liquids as antiwear additives in base oils: influence of structure on miscibility and antiwear performance for steel on aluminum. Somers AE; Khemchandani B; Howlett PC; Sun J; MacFarlane DR; Forsyth M ACS Appl Mater Interfaces; 2013 Nov; 5(22):11544-53. PubMed ID: 24187923 [TBL] [Abstract][Full Text] [Related]
49. Lubrication mechanisms of dispersed carbon microspheres in boundary through hydrodynamic lubrication regimes. Solomon SE; Doubleday P; Landry J; John VT; Pesika NS J Colloid Interface Sci; 2023 Nov; 650(Pt B):1801-1810. PubMed ID: 37506420 [TBL] [Abstract][Full Text] [Related]
50. Ultrastable Lubricating Properties of Robust Self-Repairing Tribofilms Enabled by in Situ-Assembled Polydopamine Nanoparticles. Chen G; Zhao J; Chen K; Liu S; Zhang M; He Y; Luo J Langmuir; 2020 Feb; 36(4):852-861. PubMed ID: 31898907 [TBL] [Abstract][Full Text] [Related]
51. Multilayer Tribofilm: An Unique Structure to Strengthen Interface Tribological Behaviors. Wen P; Lei Y; Yan Q; Han Y; Fan M ACS Appl Mater Interfaces; 2021 Mar; 13(9):11524-11534. PubMed ID: 33635048 [TBL] [Abstract][Full Text] [Related]
52. Synthesis and tribological behavior of fatty acid constituted tetramethylguanidinium (TMG) ionic liquids for a steel/steel contact. Khatri PK; M S A; Thakre GD; Jain SL Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():208-217. PubMed ID: 30033248 [TBL] [Abstract][Full Text] [Related]
53. Palladium Nanoparticle-Enabled Ultrathick Tribofilm with Unique Composition. Kumara C; Leonard DN; Meyer HM; Luo H; Armstrong BL; Qu J ACS Appl Mater Interfaces; 2018 Sep; 10(37):31804-31812. PubMed ID: 30141901 [TBL] [Abstract][Full Text] [Related]
54. Towards outstanding lubricity performance of proton-type ionic liquids or synergistic effects with friction modifiers used as oil additives at the steel/steel interface. Shi Y; Yang S; Zhang X; Liu W Soft Matter; 2024 Jan; 20(2):365-374. PubMed ID: 38093713 [TBL] [Abstract][Full Text] [Related]
55. Friction Behaviour of 6082-T6 Aluminium Alloy Sheets in a Strip Draw Tribological Test. Trzepieciński T; Slota J; Kaščák Ľ; Gajdoš I; Vojtko M Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984219 [TBL] [Abstract][Full Text] [Related]
56. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties. Gupta B; Kumar N; Panda K; Dash S; Tyagi AK Sci Rep; 2016 Jan; 6():18372. PubMed ID: 26725334 [TBL] [Abstract][Full Text] [Related]
57. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Deepika ; Li LH; Glushenkov AM; Hait SK; Hodgson P; Chen Y Sci Rep; 2014 Dec; 4():7288. PubMed ID: 25470295 [TBL] [Abstract][Full Text] [Related]
58. Friction Reduction Achieved by Ultraviolet Illumination on TiO Sang X; Han K; Zhu M; Ma L Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612193 [TBL] [Abstract][Full Text] [Related]
59. New Functionality of Ionic Liquids as Lubricant Additives: Mitigating Rolling Contact Fatigue. Stump BC; Zhou Y; Luo H; Leonard DN; Viola MB; Qu J ACS Appl Mater Interfaces; 2019 Aug; 11(33):30484-30492. PubMed ID: 31361453 [TBL] [Abstract][Full Text] [Related]
60. Regression models to predict the behavior of the coefficient of friction of AISI 316L on UHMWPE under ISO 14243-3 conditions. Garcia-Garcia AL; Alvarez-Vera M; Montoya-Santiyanes LA; Dominguez-Lopez I; Montes-Seguedo JL; Sosa-Savedra JC; Barceinas-Sanchez JDO J Mech Behav Biomed Mater; 2018 Jun; 82():248-256. PubMed ID: 29627736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]