These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water. Laureti S; Hutchins DA; Astolfi L; Watson RL; Thomas PJ; Burrascano P; Nie L; Freear S; Askari M; Clare AT; Ricci M Sci Rep; 2020 Jun; 10(1):10601. PubMed ID: 32606299 [TBL] [Abstract][Full Text] [Related]
5. Current developments in elastic and acoustic metamaterials science. Failla G; Marzani A; Palermo A; Russillo AF; Colquitt D Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20240038. PubMed ID: 39129405 [TBL] [Abstract][Full Text] [Related]
6. Current developments in elastic and acoustic metamaterials science. Failla G; Marzani A; Palermo A; Russillo AF; Colquitt D Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230369. PubMed ID: 39069760 [TBL] [Abstract][Full Text] [Related]
7. An adjustable acoustic metamaterial cell using a magnetic membrane for tunable resonance. Gardiner A; Domingo-Roca R; Windmill JFC; Feeney A Sci Rep; 2024 Jul; 14(1):15044. PubMed ID: 38951634 [TBL] [Abstract][Full Text] [Related]
8. Void-Engineered Metamaterial Delay Line with Built-In Impedance Matching for Ultrasonic Applications. Palanisamy RP; Chavez LA; Castro R; Findikoglu AT Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339710 [TBL] [Abstract][Full Text] [Related]
9. Metamaterials for Acoustic Noise Filtering and Energy Harvesting. Mir F; Mandal D; Banerjee S Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177431 [TBL] [Abstract][Full Text] [Related]
10. Design and experimental validation of a finite-size labyrinthine metamaterial for vibro-acoustics: enabling upscaling towards large-scale structures. Hermann S; Billon K; Parlak AM; Orlowsky J; Collet M; Madeo A Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230367. PubMed ID: 39069763 [TBL] [Abstract][Full Text] [Related]
11. Acoustic metamaterials with circular sector cavities and programmable densities. Akl W; Elsabbagh A; Baz A J Acoust Soc Am; 2012 Oct; 132(4):2857-65. PubMed ID: 23039552 [TBL] [Abstract][Full Text] [Related]
12. Acoustic metamaterials: From local resonances to broad horizons. Ma G; Sheng P Sci Adv; 2016 Feb; 2(2):e1501595. PubMed ID: 26933692 [TBL] [Abstract][Full Text] [Related]
13. Pneumatically-Actuated Acoustic Metamaterials Based on Helmholtz Resonators. Hedayati R; Lakshmanan S Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32210047 [TBL] [Abstract][Full Text] [Related]
14. Recent Developments of Acoustic Energy Harvesting: A Review. Yuan M; Cao Z; Luo J; Chou X Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30641876 [TBL] [Abstract][Full Text] [Related]
15. Magneto-Mechanical Bilayer Metamaterial with Global Area-Preserving Density Tunability for Acoustic Wave Regulation. Sim J; Wu S; Dai J; Zhao RR Adv Mater; 2023 Sep; 35(35):e2303541. PubMed ID: 37335806 [TBL] [Abstract][Full Text] [Related]
17. Complementary Acoustic Metamaterial for Penetrating Aberration Layers. Li L; Diao Y; Wu H; Jiang W ACS Appl Mater Interfaces; 2022 Jun; 14(25):28604-28614. PubMed ID: 35726703 [TBL] [Abstract][Full Text] [Related]
18. Generative adversarial networks for the design of acoustic metamaterials. Gurbuz C; Kronowetter F; Dietz C; Eser M; Schmid J; Marburg S J Acoust Soc Am; 2021 Feb; 149(2):1162. PubMed ID: 33639806 [TBL] [Abstract][Full Text] [Related]
19. Extreme material parameters accessible by active acoustic metamaterials with Willis coupling. Craig SR; Wang B; Su X; Banerjee D; Welch PJ; Yip MC; Hu Y; Shi C J Acoust Soc Am; 2022 Mar; 151(3):1722. PubMed ID: 35364942 [TBL] [Abstract][Full Text] [Related]
20. Zero-reflection acoustic metamaterial with a negative refractive index. Park CM; Lee SH Sci Rep; 2019 Mar; 9(1):3372. PubMed ID: 30833636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]