These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 34072606)
21. Expression of cyclooxygenase-2 in urinary bladder in rats with cyclophosphamide-induced cystitis. Klinger MB; Dattilio A; Vizzard MA Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R677-85. PubMed ID: 17537839 [TBL] [Abstract][Full Text] [Related]
22. Expression of corticotropin-releasing factor and CRF receptors in micturition pathways after cyclophosphamide-induced cystitis. LaBerge J; Malley SE; Zvarova K; Vizzard MA Am J Physiol Regul Integr Comp Physiol; 2006 Sep; 291(3):R692-703. PubMed ID: 16614059 [TBL] [Abstract][Full Text] [Related]
23. The function of P2X3 receptor and NK1 receptor antagonists on cyclophosphamide-induced cystitis in rats. Zhang HP; Li CL; Lu P; Zheng JC; Yu LL; Yang WM; Xiong F; Zeng XY World J Urol; 2014 Feb; 32(1):91-7. PubMed ID: 23666265 [TBL] [Abstract][Full Text] [Related]
24. Role of c-Jun N-terminal kinase (JNK) activation in micturition reflexes in cyclophosphamide (CYP)-induced cystitis in female rats. Dugan C; Malley S; Arms L; May V; Vizzard MA J Mol Neurosci; 2014 Nov; 54(3):360-9. PubMed ID: 24763745 [TBL] [Abstract][Full Text] [Related]
25. Decrease in bladder overactivity with REN1820 in rats with cyclophosphamide induced cystitis. Hu VY; Zvara P; Dattilio A; Redman TL; Allen SJ; Dawbarn D; Stroemer RP; Vizzard MA J Urol; 2005 Mar; 173(3):1016-21. PubMed ID: 15711368 [TBL] [Abstract][Full Text] [Related]
26. Uroprotective effect of ambroxol in cyclophosphamide-induced cystitis in mice. Barut EN; Engin S; Barut B; Kaya C; Kerimoglu G; Ozel A; Kadioglu M Int Urol Nephrol; 2019 May; 51(5):803-810. PubMed ID: 30895504 [TBL] [Abstract][Full Text] [Related]
28. Phosphorylation of extracellular signal-regulated kinases in urinary bladder in rats with cyclophosphamide-induced cystitis. Corrow KA; Vizzard MA Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R125-34. PubMed ID: 17409261 [TBL] [Abstract][Full Text] [Related]
29. Suppression of adenosine A Yang Y; Zhang H; Lu Q; Liu X; Fan Y; Zhu J; Sun B; Zhao J; Dong X; Li L Biochem Pharmacol; 2021 Jan; 183():114340. PubMed ID: 33189675 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of the Efficacy of Minhos LF; da Silva de Lima Gehlen AC; Júnior FFB; Dos Santos AC; Souza RIC; de Barros ME Curr Pharm Biotechnol; 2023; 24(3):438-449. PubMed ID: 35507803 [TBL] [Abstract][Full Text] [Related]
31. Role of p75NTR in female rat urinary bladder with cyclophosphamide-induced cystitis. Klinger MB; Vizzard MA Am J Physiol Renal Physiol; 2008 Dec; 295(6):F1778-89. PubMed ID: 18842820 [TBL] [Abstract][Full Text] [Related]
32. Uroprotective effect of pentoxifylline in cyclophosphamide-induced hemorrhagic cystitis in rats. Abo-Salem OM J Biochem Mol Toxicol; 2013 Jul; 27(7):343-50. PubMed ID: 23695977 [TBL] [Abstract][Full Text] [Related]
33. Role of CXCR2 and TRPV1 in functional, inflammatory and behavioural changes in the rat model of cyclophosphamide-induced haemorrhagic cystitis. Dornelles FN; Andrade EL; Campos MM; Calixto JB Br J Pharmacol; 2014 Jan; 171(2):452-67. PubMed ID: 24117268 [TBL] [Abstract][Full Text] [Related]
34. Uro-protective role of chrysin against cyclophosphamide-induced hemorrhagic cystitis in rats involving the turning-off NF-κB/P38-MAPK, NO/PARP-1 and STAT-3 signaling cascades. Saleh DO; El-Nasr NMEA; Fayez AM; Ahmed KA; Mohamed RA Chem Biol Interact; 2023 Sep; 382():110585. PubMed ID: 37263553 [TBL] [Abstract][Full Text] [Related]
35. Hyperosmolarity alters micturition: a comparison of urinary bladder motor activity in hyperosmolar and cyclophosphamide-induced models of overactive bladder. Juszczak K; Ziomber A; Wyczółkowski M; Thor PJ Can J Physiol Pharmacol; 2010 Sep; 88(9):899-906. PubMed ID: 20921976 [TBL] [Abstract][Full Text] [Related]
36. Protective effects of the selective alpha1A-adrenoceptor antagonist silodosin against cyclophosphamide-induced cystitis in rats. Liu N; Shimizu S; Shimizu T; Nakamura K; Yamamoto M; Higashi Y; Saito M J Pharmacol Sci; 2016 Sep; 132(1):71-77. PubMed ID: 27654219 [TBL] [Abstract][Full Text] [Related]
37. Inhibition of U-II/UT signaling ameliorates cystitis-associated bladder hyperactivity by targeting the RhoA/Rho-kinase pathway. Liu Q; Lu QD; Sun BS; Zhao J; He F; Zhu JZ Kaohsiung J Med Sci; 2022 Sep; 38(9):879-888. PubMed ID: 35766129 [TBL] [Abstract][Full Text] [Related]
38. Effect of phosphodiesterase type 4 inhibitor rolipram on cyclophosphamide-induced cystitis in rats. Büyüknacar HS; Kumcu EK; Göçmen C; Onder S Eur J Pharmacol; 2008 May; 586(1-3):293-9. PubMed ID: 18358472 [TBL] [Abstract][Full Text] [Related]
39. Effects of sensory neuron-specific receptor agonist on bladder function in a rat model of cystitis induced by cyclophosphamide. Honda M; Yoshimura N; Kawamoto B; Kobayashi N; Hikita K; Muraoka K; Saito M; Sejima T; Chancellor MB; Takenaka A Int Urol Nephrol; 2014 Oct; 46(10):1953-9. PubMed ID: 24824147 [TBL] [Abstract][Full Text] [Related]
40. Upregulation of vascular endothelial growth factor isoform VEGF-164 and receptors (VEGFR-2, Npn-1, and Npn-2) in rats with cyclophosphamide-induced cystitis. Cheppudira BP; Girard BM; Malley SE; Schutz KC; May V; Vizzard MA Am J Physiol Renal Physiol; 2008 Sep; 295(3):F826-36. PubMed ID: 18632792 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]