These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterization of Polyamide 6/Multilayer Graphene Nanoplatelet Composite Textile Filaments Obtained Via In Situ Polymerization and Melt Spinning. Vasiljević J; Demšar A; Leskovšek M; Simončič B; Čelan Korošin N; Jerman I; Šobak M; Žitko G; Van de Velde N; Čolović M Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32785048 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Wood and Graphene Nanoplatelets (GNPs) Reinforced Polymer Composites. Al-Maqdasi Z; Gong G; Nyström B; Emami N; Joffe R Materials (Basel); 2020 May; 13(9):. PubMed ID: 32369956 [TBL] [Abstract][Full Text] [Related]
4. Effect of Functionalization of Graphene Nanoplatelets on the Mechanical and Thermal Properties of Silicone Rubber Composites. Zhang G; Wang F; Dai J; Huang Z Materials (Basel); 2016 Feb; 9(2):. PubMed ID: 28787891 [TBL] [Abstract][Full Text] [Related]
5. Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization. Evgin T; Turgut A; Hamaoui G; Spitalsky Z; Horny N; Micusik M; Chirtoc M; Sarikanat M; Omastova M Beilstein J Nanotechnol; 2020; 11():167-179. PubMed ID: 32082959 [TBL] [Abstract][Full Text] [Related]
6. Enhancing an Aerospace Grade Benzoxazine Resin by Means of Graphene Nanoplatelets Addition. García-Martínez V; Gude MR; Calvo S; Ureña A Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372147 [TBL] [Abstract][Full Text] [Related]
7. Thermal and Mechanical Behavior of Wood Plastic Composites by Addition of Graphene Nanoplatelets. Zhang X; Zhang J; Wang R Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31430877 [TBL] [Abstract][Full Text] [Related]
8. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Caminero MÁ; Chacón JM; García-Plaza E; Núñez PJ; Reverte JM; Becar JP Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31060241 [TBL] [Abstract][Full Text] [Related]
9. Electrical, Mechanical, and Thermal Properties of LDPE Graphene Nanoplatelets Composites Produced by Means of Melt Extrusion Process. Gaska K; Xu X; Gubanski S; Kádár R Polymers (Basel); 2017 Jan; 9(1):. PubMed ID: 30970688 [TBL] [Abstract][Full Text] [Related]
10. 3D Porous Graphene Based Aerogel for Electromagnetic Applications. Cheraghi Bidsorkhi H; D'Aloia AG; Tamburrano A; De Bellis G; Delfini A; Ballirano P; Sarto MS Sci Rep; 2019 Oct; 9(1):15719. PubMed ID: 31673020 [TBL] [Abstract][Full Text] [Related]
11. Gas Barrier, Thermal, Mechanical and Rheological Properties of Highly Aligned Graphene-LDPE Nanocomposites. Gaska K; Kádár R; Rybak A; Siwek A; Gubanski S Polymers (Basel); 2017 Jul; 9(7):. PubMed ID: 30970972 [TBL] [Abstract][Full Text] [Related]
12. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets. Le MT; Huang SC Materials (Basel); 2015 Aug; 8(8):5526-5536. PubMed ID: 28793521 [TBL] [Abstract][Full Text] [Related]
13. Mechanical and Antimicrobial Properties of the Graphene-Polyamide 6 Composite. Głuchowski P; Macieja M; Tomala R; Stefanski M; Stręk W; Ptak M; Szymański D; Szustakiewicz K; Junka A; Dudek B Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063756 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive Enhancement in Thermomechanical Performance of Melt-Extruded PEEK Filaments by Graphene Incorporation. Yaragalla S; Zahid M; Panda JK; Tsagarakis N; Cingolani R; Athanassiou A Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925187 [TBL] [Abstract][Full Text] [Related]
15. Preparation and Properties of SBR Composites Containing Graphene Nanoplatelets Modified with Pyridinium Derivative. Gaca M; Vaulot C; Maciejewska M; Lipińska M Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33261166 [TBL] [Abstract][Full Text] [Related]
16. Dioctyl Phthalate-Modified Graphene Nanoplatelets: An Effective Additive for Enhanced Mechanical Properties of Natural Rubber. Duy LNP; Bui C; Nguyen LT; Nguyen TH; Tung NT; La DD Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808586 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Green Bionanocomposites of Bio-based Poly(butylene succinate) Reinforced with Pyrolyzed Perennial Grass Microparticles and Graphene Nanoplatelets. Cooper CJ; Abdelwahab MA; Mohanty AK; Misra M ACS Omega; 2019 Dec; 4(24):20476-20485. PubMed ID: 31858031 [TBL] [Abstract][Full Text] [Related]
18. Tailoring Multifunctional and Lightweight Hierarchical Hybrid Graphene Nanoplatelet and Glass Fiber Composites. Sansone ND; Razzaz Z; Salari M; Tuccitto AV; Aguiar R; Leroux M; Lee PC ACS Appl Mater Interfaces; 2022 Sep; 14(35):40232-40246. PubMed ID: 36000496 [TBL] [Abstract][Full Text] [Related]
19. Temperature-Dependent Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Tensile Quasi-Static and Fatigue Properties of Epoxy Nanocomposites. Jen YM; Chang HH; Lu CM; Liang SY Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33379328 [TBL] [Abstract][Full Text] [Related]
20. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties. Olowojoba GB; Eslava S; Gutierrez ES; Kinloch AJ; Mattevi C; Rocha VG; Taylor AC Appl Nanosci; 2016; 6(7):1015-1022. PubMed ID: 32355586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]