These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34072689)

  • 1. Thermally-Induced Shape-Memory Behavior of Degradable Gelatin-Based Networks.
    Neffe AT; Löwenberg C; Julich-Gruner KK; Behl M; Lendlein A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Biocompatible Shape-Memory Double Network Hydrogels.
    Chen J; Huang J; Hu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12726-12734. PubMed ID: 33336570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt-Induced Shape-Memory Effect in Gelatin-Based Hydrogels.
    Löwenberg C; Julich-Gruner KK; Neffe AT; Behl M; Lendlein A
    Biomacromolecules; 2020 Jun; 21(6):2024-2031. PubMed ID: 32364721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering.
    Liu Y; Chan-Park MB
    Biomaterials; 2009 Jan; 30(2):196-207. PubMed ID: 18922573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory.
    Fu CY; Chuang WT; Hsu SH
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9702-9713. PubMed ID: 33600161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation.
    Hoch E; Schuh C; Hirth T; Tovar GE; Borchers K
    J Mater Sci Mater Med; 2012 Nov; 23(11):2607-17. PubMed ID: 22890515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabricating Degradable Thermoresponsive Hydrogels on Multiple Length Scales via Reactive Extrusion, Microfluidics, Self-assembly, and Electrospinning.
    Sivakumaran D; Bakaic E; Campbell SB; Xu F; Mueller E; Hoare T
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29708523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.
    Löwenberg C; Balk M; Wischke C; Behl M; Lendlein A
    Acc Chem Res; 2017 Apr; 50(4):723-732. PubMed ID: 28199083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ethylene oxide)/Gelatin-Based Biphasic Photocrosslinkable Hydrogels of Tunable Morphology for Hepatic Progenitor Cell Encapsulation.
    Meng Y; Gantier M; Nguyen TH; Nicolai T; Nicol E
    Biomacromolecules; 2023 Feb; 24(2):789-796. PubMed ID: 36655630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of gelatin-based hydrogels with tunable mechanical properties and modulation on cell-matrix interactions.
    Jiang Y; Wang H; Wang X; Yu X; Li H; Tang K; Li Q
    J Biomater Appl; 2021 Nov; 36(5):902-911. PubMed ID: 34053306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Self-Healing and Shape Memory Polymer that Functions at Body Temperature.
    Lai HY; Wang HQ; Lai JC; Li CH
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks.
    Bode F; da Silva MA; Drake AF; Ross-Murphy SB; Dreiss CA
    Biomacromolecules; 2011 Oct; 12(10):3741-52. PubMed ID: 21819136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structurally Dynamic Gelatin-Based Hydrogels with Self-Healing, Shape Memory, and Cytocompatible Properties for 4D Printing.
    Wang Z; Gu J; Zhang D; Zhang Y; Chen J
    Biomacromolecules; 2023 Jan; 24(1):109-117. PubMed ID: 36461924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailored poly(ethylene) glycol dimethacrylate based shape memory polymer for orthopedic applications.
    Antony GJM; Jarali CS; Aruna ST; Raja S
    J Mech Behav Biomed Mater; 2017 Jan; 65():857-865. PubMed ID: 27810732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks.
    Liang J; Guo Z; Timmerman A; Grijpma D; Poot A
    Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate/gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ.
    Ren P; Wei D; Liang M; Xu L; Zhang T; Zhang Q
    Int J Biol Macromol; 2022 Jul; 212():67-84. PubMed ID: 35588977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Human-Derived Photocrosslinkable Gelatin Hydrogels for Tissue Engineering.
    Altunbek M; Gezek M; Buck P; Camci-Unal G
    Biomacromolecules; 2024 Jan; 25(1):165-176. PubMed ID: 38101806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Hydrogen Peroxide-Mediated Cross-Linking and Degradation on Cell-Adhesive Gelatin Hydrogels.
    Mubarok W; Qu Y; Sakai S
    ACS Appl Bio Mater; 2021 May; 4(5):4184-4190. PubMed ID: 35006831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.