These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34072689)

  • 21. Succinoglycan dialdehyde-reinforced gelatin hydrogels with toughness and thermal stability.
    Kim S; Jeong D; Lee H; Kim D; Jung S
    Int J Biol Macromol; 2020 Apr; 149():281-289. PubMed ID: 31982524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solvent-free synthesis of biostable segmented polyurethane shape memory polymers for biomedical applications.
    Ramezani M; Getya D; Gitsov I; Monroe MBB
    J Mater Chem B; 2024 Jan; 12(5):1217-1231. PubMed ID: 38168979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NIR-Triggered Rapid Shape Memory PAM-GO-Gelatin Hydrogels with High Mechanical Strength.
    Huang J; Zhao L; Wang T; Sun W; Tong Z
    ACS Appl Mater Interfaces; 2016 May; 8(19):12384-92. PubMed ID: 27116394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and characterization of porous, degradable, biocompatible poly(vinyl alcohol)/tannic acid/gelatin/hyaluronic acid hydrogels with good mechanical properties for cartilage tissue engineering.
    Xiang C; Guo Z; Wang Z; Zhang J; Chen W; Li X; Wei X; Li P
    J Biomater Sci Polym Ed; 2023 Dec; 34(16):2198-2216. PubMed ID: 37403564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of thin gelatin hydrogel membranes with balloon properties for dynamic tissue engineering.
    Jepsen ML; Nielsen LH; Boisen A; Almdal K; Dufva M
    Biopolymers; 2019 Jan; 110(1):e23241. PubMed ID: 30536858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid Methacrylated Gelatin and Hyaluronic Acid Hydrogel Scaffolds. Preparation and Systematic Characterization for Prospective Tissue Engineering Applications.
    Velasco-Rodriguez B; Diaz-Vidal T; Rosales-Rivera LC; García-González CA; Alvarez-Lorenzo C; Al-Modlej A; Domínguez-Arca V; Prieto G; Barbosa S; Soltero Martínez JFA; Taboada P
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers.
    Yu Y; Deng C; Meng F; Shi Q; Feijen J; Zhong Z
    J Biomed Mater Res A; 2011 Nov; 99(2):316-26. PubMed ID: 21887740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation.
    Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.
    Liu Y; Geever LM; Kennedy JE; Higginbotham CL; Cahill PA; McGuinness GB
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):203-9. PubMed ID: 20129419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.
    Van Nieuwenhove I; Salamon A; Peters K; Graulus GJ; Martins JC; Frankel D; Kersemans K; De Vos F; Van Vlierberghe S; Dubruel P
    Carbohydr Polym; 2016 Nov; 152():129-139. PubMed ID: 27516257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering.
    Fares MM; Shirzaei Sani E; Portillo Lara R; Oliveira RB; Khademhosseini A; Annabi N
    Biomater Sci; 2018 Oct; 6(11):2938-2950. PubMed ID: 30246835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermally-Induced Triple-Shape Hydrogels: Soft Materials Enabling Complex Movements.
    Nöchel U; Behl M; Balk M; Lendlein A
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28068-28076. PubMed ID: 27673368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal- and salt-activated shape memory hydrogels based on a gelatin/polyacrylamide double network.
    Chen F; Yang K; Zhao D; Yang H
    RSC Adv; 2019 Jun; 9(32):18619-18626. PubMed ID: 35515246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of composition of interpenetrating polymer network hydrogels based on poly(acrylic acid) and gelatin on tissue response: a quantitative in vivo study.
    Burugapalli K; Koul V; Dinda AK
    J Biomed Mater Res A; 2004 Feb; 68(2):210-8. PubMed ID: 14704962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Injectable and reversible preformed cryogels based on chemically crosslinked gelatin methacrylate (GelMA) and physically crosslinked hyaluronic acid (HA) for soft tissue engineering.
    Jonidi Shariatzadeh F; Solouk A; Bagheri Khoulenjani S; Bonakdar S; Mirzadeh H
    Colloids Surf B Biointerfaces; 2021 Jul; 203():111725. PubMed ID: 33838583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-healing conductive hydrogels based on alginate, gelatin and polypyrrole serve as a repairable circuit and a mechanical sensor.
    Ren K; Cheng Y; Huang C; Chen R; Wang Z; Wei J
    J Mater Chem B; 2019 Sep; 7(37):5704-5712. PubMed ID: 31482926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates.
    Choi NY; Lendlein A
    Soft Matter; 2007 Jun; 3(7):901-909. PubMed ID: 32900085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(ethylene glycol)-crosslinked gelatin hydrogel substrates with conjugated bioactive peptides influence endothelial cell behavior.
    Su J; Satchell SC; Wertheim JA; Shah RN
    Biomaterials; 2019 May; 201():99-112. PubMed ID: 30807988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.
    Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S
    Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.