These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 34072888)
1. Bio-Functionalized Chitosan for Bone Tissue Engineering. Brun P; Zamuner A; Battocchio C; Cassari L; Todesco M; Graziani V; Iucci G; Marsotto M; Tortora L; Secchi V; Dettin M Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072888 [TBL] [Abstract][Full Text] [Related]
2. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Kazimierczak P; Benko A; Nocun M; Przekora A Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360 [TBL] [Abstract][Full Text] [Related]
3. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
4. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039 [TBL] [Abstract][Full Text] [Related]
5. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908 [TBL] [Abstract][Full Text] [Related]
6. Osteoblast studied on gelatin based biomaterials in rabbit Bone Bioengineering. Yadav N; Srivastava P Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109892. PubMed ID: 31499962 [TBL] [Abstract][Full Text] [Related]
7. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. Kazimierczak P; Kolmas J; Przekora A Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753 [TBL] [Abstract][Full Text] [Related]
8. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption. Przekora A; Benko A; Blazewicz M; Ginalska G Biomed Mater; 2016 Jul; 11(4):045001. PubMed ID: 27388048 [TBL] [Abstract][Full Text] [Related]
9. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study. Przekora A; Palka K; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384 [TBL] [Abstract][Full Text] [Related]
10. Sequential releasing of VEGF and BMP-2 in hydroxyapatite collagen scaffolds for bone tissue engineering: Design and characterization. Dou DD; Zhou G; Liu HW; Zhang J; Liu ML; Xiao XF; Fei JJ; Guan XL; Fan YB Int J Biol Macromol; 2019 Feb; 123():622-628. PubMed ID: 30447364 [TBL] [Abstract][Full Text] [Related]
11. Alginate bone scaffolds coated with a bioactive lactose modified chitosan for human dental pulp stem cells proliferation and differentiation. Porrelli D; Gruppuso M; Vecchies F; Marsich E; Turco G Carbohydr Polym; 2021 Dec; 273():118610. PubMed ID: 34561009 [TBL] [Abstract][Full Text] [Related]
12. In vitro evaluation of the risk of inflammatory response after chitosan/HA and chitosan/β-1,3-glucan/HA bone scaffold implantation. Przekora A; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():355-61. PubMed ID: 26838861 [TBL] [Abstract][Full Text] [Related]
13. Hyaluronic acid oligosaccharides modified mineralized collagen and chitosan with enhanced osteoinductive properties for bone tissue engineering. Li M; Jia W; Zhang X; Weng H; Gu G; Chen Z Carbohydr Polym; 2021 May; 260():117780. PubMed ID: 33712136 [TBL] [Abstract][Full Text] [Related]
14. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
15. Chitosan/biphasic calcium phosphate scaffolds functionalized with BMP-2-encapsulated nanoparticles and RGD for bone regeneration. Gan D; Liu M; Xu T; Wang K; Tan H; Lu X J Biomed Mater Res A; 2018 Oct; 106(10):2613-2624. PubMed ID: 29790251 [TBL] [Abstract][Full Text] [Related]
16. Modification of decellularized goat-lung scaffold with chitosan/nanohydroxyapatite composite for bone tissue engineering applications. Gupta SK; Dinda AK; Potdar PD; Mishra NC Biomed Res Int; 2013; 2013():651945. PubMed ID: 23841083 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique. Dong Y; Liang J; Cui Y; Xu S; Zhao N Carbohydr Polym; 2018 Oct; 197():183-193. PubMed ID: 30007604 [TBL] [Abstract][Full Text] [Related]
18. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. Shaheen TI; Montaser AS; Li S Int J Biol Macromol; 2019 Jan; 121():814-821. PubMed ID: 30342123 [TBL] [Abstract][Full Text] [Related]
19. A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. Zhao C; Qazvini NT; Sadati M; Zeng Z; Huang S; De La Lastra AL; Zhang L; Feng Y; Liu W; Huang B; Zhang B; Dai Z; Shen Y; Wang X; Luo W; Liu B; Lei Y; Ye Z; Zhao L; Cao D; Yang L; Chen X; Athiviraham A; Lee MJ; Wolf JM; Reid RR; Tirrell M; Huang W; de Pablo JJ; He TC ACS Appl Mater Interfaces; 2019 Mar; 11(9):8749-8762. PubMed ID: 30734555 [TBL] [Abstract][Full Text] [Related]