These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34072888)

  • 21. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability.
    Liao F; Peng XY; Yang F; Ke QF; Zhu ZH; Guo YP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109999. PubMed ID: 31499945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration.
    He J; Hu X; Cao J; Zhang Y; Xiao J; Peng L; Chen D; Xiong C; Zhang L
    Carbohydr Polym; 2021 Feb; 253():117198. PubMed ID: 33278972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and Characterization of Poly(Vinyl Alcohol)-Chitosan-Hydroxyapatite Scaffolds: A Promising Alternative for Bone Tissue Regeneration.
    Pineda-Castillo S; Bernal-Ballén A; Bernal-López C; Segura-Puello H; Nieto-Mosquera D; Villamil-Ballesteros A; Muñoz-Forero D; Munster L
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30241366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chitosan/β-1,3-glucan/hydroxyapatite bone scaffold enhances osteogenic differentiation through TNF-α-mediated mechanism.
    Przekora A; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():225-233. PubMed ID: 28183603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering.
    Adithya SP; Sidharthan DS; Abhinandan R; Balagangadharan K; Selvamurugan N
    Int J Biol Macromol; 2020 Dec; 164():1960-1972. PubMed ID: 32800960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration.
    Balagangadharan K; Viji Chandran S; Arumugam B; Saravanan S; Devanand Venkatasubbu G; Selvamurugan N
    Int J Biol Macromol; 2018 May; 111():953-958. PubMed ID: 29415417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application.
    Przekora A; Palka K; Ginalska G
    J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chitosan Covalently Functionalized with Peptides Mapped on Vitronectin and BMP-2 for Bone Tissue Engineering.
    Brun P; Zamuner A; Cassari L; D'Auria G; Falcigno L; Franchi S; Contini G; Marsotto M; Battocchio C; Iucci G; Dettin M
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heparin-functionalized chitosan scaffolds for bone tissue engineering.
    Gümüşderelioğlu M; Aday S
    Carbohydr Res; 2011 Apr; 346(5):606-13. PubMed ID: 21333274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineered cellular microenvironments from functionalized multiwalled carbon nanotubes integrating Zein/Chitosan @Polyurethane for bone cell regeneration.
    Shrestha S; Shrestha BK; Ko SW; Kandel R; Park CH; Kim CS
    Carbohydr Polym; 2021 Jan; 251():117035. PubMed ID: 33142593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes.
    Iqbal H; Ali M; Zeeshan R; Mutahir Z; Iqbal F; Nawaz MAH; Shahzadi L; Chaudhry AA; Yar M; Luan S; Khan AF; Rehman IU
    Colloids Surf B Biointerfaces; 2017 Dec; 160():553-563. PubMed ID: 29024920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration.
    Przekora A; Ginalska G
    Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration.
    Uswatta SP; Okeke IU; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of chitosan-loaded hydroxyapatite on osteoblasts and osteosarcoma for chemopreventative applications.
    Koski C; Vu AA; Bose S
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111041. PubMed ID: 32600681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomaterial composed of chitosan, riboflavin, and hydroxyapatite for bone tissue regeneration.
    Gaweł J; Milan J; Żebrowski J; Płoch D; Stefaniuk I; Kus-Liśkiewicz M
    Sci Rep; 2023 Oct; 13(1):17004. PubMed ID: 37813934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ectopic osteogenic tissue formation by MC3T3-E1 cell-laden chitosan/hydroxyapatite composite scaffold.
    Koç A; Elçin AE; Elçin YM
    Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1440-7. PubMed ID: 25968048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.