These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34072913)

  • 21. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites.
    Kim Y; Lee J; Yeom MS; Shin JW; Kim H; Cui Y; Kysar JW; Hone J; Jung Y; Jeon S; Han SM
    Nat Commun; 2013; 4():2114. PubMed ID: 23820590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoscale Mechanics of Graphene and Graphene Oxide in Composites: A Scientific and Technological Perspective.
    Palermo V; Kinloch IA; Ligi S; Pugno NM
    Adv Mater; 2016 Aug; 28(29):6232-8. PubMed ID: 26960186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of delamination in failure of fibre-reinforced composites.
    Wisnom MR
    Philos Trans A Math Phys Eng Sci; 2012 Apr; 370(1965):1850-70. PubMed ID: 22431760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homogenized finite element analysis on effective elastoplastic mechanical behaviors of composite with imperfect interfaces.
    Jiang WG; Zhong RZ; Qin QH; Tong YG
    Int J Mol Sci; 2014 Dec; 15(12):23389-407. PubMed ID: 25522170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient removal of arsenic using graphene-zeolite based composites.
    Khatamian M; Khodakarampoor N; Saket-Oskoui M
    J Colloid Interface Sci; 2017 Jul; 498():433-441. PubMed ID: 28349886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Folding Large Graphene-on-Polymer Films Yields Laminated Composites with Enhanced Mechanical Performance.
    Wang B; Li Z; Wang C; Signetti S; Cunning BV; Wu X; Huang Y; Jiang Y; Shi H; Ryu S; Pugno NM; Ruoff RS
    Adv Mater; 2018 Aug; 30(35):e1707449. PubMed ID: 29992669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of temperature and grain size on deformation of polycrystalline copper-graphene nanolayered composites.
    Ma Y; Zhang S; Xu Y; Liu X; Luo SN
    Phys Chem Chem Phys; 2020 Feb; 22(8):4741-4748. PubMed ID: 32057046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable Preparation of Ultrathin Graphene-Reinforced Copper Composite Foils with High Mechanical Properties and Excellent Heat Dissipation.
    Wei C; Ye N; Hong L; Yao J; Xia W; Mao J; Wang Y; Zhao Y; Tang J
    ACS Appl Mater Interfaces; 2021 May; 13(18):21714-21723. PubMed ID: 33909417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness.
    Pavithra CL; Sarada BV; Rajulapati KV; Rao TN; Sundararajan G
    Sci Rep; 2014 Feb; 4():4049. PubMed ID: 24514043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the Evolution of Graphene Defects and the Mechanical and Thermal Properties of GNPs/Cu during CVD Repair Process.
    Xiu Z; Ju B; Duan C; Fu S; Zhang N; Mei Y; Liu J; Feng Y; Yang W; Kang P
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conductivity Behaviour under Pressure of Copper Micro-Additive/Polyurethane Composites (Experiment and Modelling).
    Mehvari S; Sanchez-Vicente Y; González S; Lafdi K
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Fe and Cr on the Macro/Micro Tribological Behaviours of Copper-Based Composites.
    Zhang Z; Zhou H; Yao P; Fan K; Liu Y; Zhao L; Xiao Y; Gong T; Deng M
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34203068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite.
    Cho S; Kikuchi K; Kawasaki A; Kwon H; Kim Y
    Nanotechnology; 2012 Aug; 23(31):315705. PubMed ID: 22797555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth of Ultraflat Graphene with Greatly Enhanced Mechanical Properties.
    Deng B; Hou Y; Liu Y; Khodkov T; Goossens S; Tang J; Wang Y; Yan R; Du Y; Koppens FHL; Wei X; Zhang Z; Liu Z; Peng H
    Nano Lett; 2020 Sep; 20(9):6798-6806. PubMed ID: 32787178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Fabrication Parameters on the Performance of 0.5 wt.% Graphene Nanoplates-Reinforced Aluminum Composites.
    Lou SM; Qu CD; Guo GX; Ran LW; Liu YQ; Zhang PP; Su CJ; Wang QB
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing Interfacial Bonding and Tensile Strength in CNT-Cu Composites by a Synergetic Method of Spraying Pyrolysis and Flake Powder Metallurgy.
    Chen X; Bao R; Yi J; Fang D; Tao J; Liu Y
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30813454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A molecular dynamics investigation for predicting the effect of various parameters on the mechanical properties of carbon nanotube-reinforced aluminum nanocomposites.
    Patel PR; Sharma S; Tiwari SK
    J Mol Model; 2020 Aug; 26(9):238. PubMed ID: 32813056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Graphene in Reducing Fatigue Damage in Cu/Gr Nanolayered Composite.
    Hwang B; Kim W; Kim J; Lee S; Lim S; Kim S; Oh SH; Ryu S; Han SM
    Nano Lett; 2017 Aug; 17(8):4740-4745. PubMed ID: 28723157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropic and temperature dependent mechanical properties of carbon honeycomb.
    Qin Q; An H; He C; Xie L; Peng Q
    Nanotechnology; 2019 Aug; 30(32):325704. PubMed ID: 30925489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomistic Study on the Sintering Process and the Strengthening Mechanism of Al-Graphene System.
    Zhu Y; Li N; Li W; Niu L; Li Z
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.