These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 34073092)
61. Discriminating changes in intracellular NADH/NAD Wilkening S; Schmitt FJ; Lenz O; Zebger I; Horch M; Friedrich T Biochim Biophys Acta Bioenerg; 2019 Oct; 1860(10):148062. PubMed ID: 31419395 [TBL] [Abstract][Full Text] [Related]
62. CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase. Bürstel I; Siebert E; Frielingsdorf S; Zebger I; Friedrich B; Lenz O Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14722-14726. PubMed ID: 27930319 [TBL] [Abstract][Full Text] [Related]
63. An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture. Jugder BE; Chen Z; Ping DT; Lebhar H; Welch J; Marquis CP Microb Cell Fact; 2015 Mar; 14():42. PubMed ID: 25880663 [TBL] [Abstract][Full Text] [Related]
64. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236 [TBL] [Abstract][Full Text] [Related]
65. Using a high-throughput, whole-cell hydrogenase assay to identify potential small molecule inhibitors of [NiFe]-hydrogenase. Sebastiampillai S; Lacasse MJ; McCusker S; Campbell T; Nitz M; Zamble DB Metallomics; 2022 Oct; 14(10):. PubMed ID: 36190308 [TBL] [Abstract][Full Text] [Related]
66. Structure of an Actinobacterial-Type [NiFe]-Hydrogenase Reveals Insight into O2-Tolerant H2 Oxidation. Schäfer C; Bommer M; Hennig SE; Jeoung JH; Dobbek H; Lenz O Structure; 2016 Feb; 24(2):285-92. PubMed ID: 26749450 [TBL] [Abstract][Full Text] [Related]
68. Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus [NiFe]-hydrogenase in Escherichia coli. Kim JY; Jo BH; Cha HJ J Biotechnol; 2011 Sep; 155(3):312-9. PubMed ID: 21794837 [TBL] [Abstract][Full Text] [Related]
69. The hydrogen-sensing apparatus in Ralstonia eutropha. Lenz O; Bernhard M; Buhrke T; Schwartz E; Friedrich B J Mol Microbiol Biotechnol; 2002 May; 4(3):255-62. PubMed ID: 11931556 [TBL] [Abstract][Full Text] [Related]
70. Tracking the route of molecular oxygen in O Kalms J; Schmidt A; Frielingsdorf S; Utesch T; Gotthard G; von Stetten D; van der Linden P; Royant A; Mroginski MA; Carpentier P; Lenz O; Scheerer P Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2229-E2237. PubMed ID: 29463722 [TBL] [Abstract][Full Text] [Related]
71. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of ralstonia eutropha H16 by way of a cyanide ligand to nickel. Bleijlevens B; Buhrke T; van der Linden E; Friedrich B; Albracht SP J Biol Chem; 2004 Nov; 279(45):46686-91. PubMed ID: 15342627 [TBL] [Abstract][Full Text] [Related]
72. Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Schubert T; Lenz O; Krause E; Volkmer R; Friedrich B Mol Microbiol; 2007 Oct; 66(2):453-67. PubMed ID: 17850259 [TBL] [Abstract][Full Text] [Related]
73. [NiFe] and [FeS] cofactors in the membrane-bound hydrogenase of Ralstonia eutropha investigated by X-ray absorption spectroscopy: insights into O(2)-tolerant H(2) cleavage. Fritsch J; Löscher S; Sanganas O; Siebert E; Zebger I; Stein M; Ludwig M; De Lacey AL; Dau H; Friedrich B; Lenz O; Haumann M Biochemistry; 2011 Jul; 50(26):5858-69. PubMed ID: 21618994 [TBL] [Abstract][Full Text] [Related]
74. Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Tersteegen A; Hedderich R Eur J Biochem; 1999 Sep; 264(3):930-43. PubMed ID: 10491142 [TBL] [Abstract][Full Text] [Related]
75. Activation of formate hydrogen-lyase via expression of uptake [NiFe]-hydrogenase in Escherichia coli BL21(DE3). Jo BH; Cha HJ Microb Cell Fact; 2015 Sep; 14():151. PubMed ID: 26395073 [TBL] [Abstract][Full Text] [Related]
76. Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins. Miki K; Atomi H; Watanabe S Acc Chem Res; 2020 Apr; 53(4):875-886. PubMed ID: 32227866 [TBL] [Abstract][Full Text] [Related]
77. Hydrogenases and H(+)-reduction in primary energy conservation. Vignais PM Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479 [TBL] [Abstract][Full Text] [Related]
78. A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases. Cracknell JA; Wait AF; Lenz O; Friedrich B; Armstrong FA Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20681-6. PubMed ID: 19934053 [TBL] [Abstract][Full Text] [Related]
79. Coordination of Synthesis and Assembly of a Modular Membrane-Associated [NiFe]-Hydrogenase Is Determined by Cleavage of the C-Terminal Peptide. Thomas C; Muhr E; Sawers RG J Bacteriol; 2015 Sep; 197(18):2989-98. PubMed ID: 26170410 [TBL] [Abstract][Full Text] [Related]
80. Molecular characterization and heterologous expression of hypCD, the first two [NiFe] hydrogenase accessory genes of Thermococcus litoralis. Takács M; Rákhely G; Kovács KL Arch Microbiol; 2001 Sep; 176(3):231-5. PubMed ID: 11511872 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]