These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34073126)

  • 1. Observer-Based Time-Variant Spacing Policy for a Platoon of Non-Holonomic Mobile Robots.
    Velasco-Villa M; Cruz-Morales RD; Rodriguez-Angeles A; Domínguez-Ortega CA
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leader-follower formation control based on non-inertial frames for non-holonomic mobile robots.
    Velasco-Villa M; Rodriguez-Angeles A; Maruri-López IZ; Báez-Hernández JA; Cruz Morales RD
    PLoS One; 2024; 19(1):e0297061. PubMed ID: 38285702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Switched Control for Connected Vehicle Platoon With Unknown Input Delays.
    Zhang H; Liu J; Wang Z; Huang C; Yan H
    IEEE Trans Cybern; 2023 Mar; 53(3):1511-1521. PubMed ID: 34487509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Analysis of Trajectory Control of Non-holonomic Mobile Robots Based on Internet of Things Target Image Enhancement Technology and Backpropagation Neural Network.
    Zhao L; Wang G; Fan X; Li Y
    Front Neurorobot; 2021; 15():634340. PubMed ID: 33828475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Path following control of planar snake robots using virtual holonomic constraints: theory and experiments.
    Rezapour E; Pettersen KY; Liljebäck P; Gravdahl JT; Kelasidi E
    Robotics Biomim; 2014; 1(1):3. PubMed ID: 26613075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust control for a tracked mobile robot based on a finite-time convergence zeroing neural network.
    Cao Y; Liu B; Pu J
    Front Neurorobot; 2023; 17():1242063. PubMed ID: 37799573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual Tracking and Depth Estimation of Mobile Robots Without Desired Velocity Information.
    Zhang K; Chen J; Li Y; Zhang X
    IEEE Trans Cybern; 2020 Jan; 50(1):361-373. PubMed ID: 30281506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observer-based finite-time control for trajectory tracking of wheeled mobile robots with kinematic disturbances.
    Miranda-Colorado R
    ISA Trans; 2024 May; 148():64-77. PubMed ID: 38580577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speed Control for Leader-Follower Robot Formation Using Fuzzy System and Supervised Machine Learning.
    Samadi Gharajeh M; Jond HB
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory tracking nonlinear H
    Rodríguez-Arellano JA; Miranda-Colorado R; Aguilar LT; Negrete-Villanueva MA
    ISA Trans; 2023 Nov; 142():372-385. PubMed ID: 37550120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Path Tracking Strategy for Car Like Robots with Sensor Unpredictability and Measurement Errors.
    Rayguru MM; Elara MR; Balakrishnan R; Muthugala MAVJ; Samarakoon SMBP
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ITC: Infused Tangential Curves for Smooth 2D and 3D Navigation of Mobile Robots
    Ravankar A; Ravankar AA; Rawankar A; Hoshino Y; Kobayashi Y
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31658781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Output Feedback and Neural Network Control of a Non-Holonomic Mobile Robot.
    Cardona M; Serrano FE
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Triggered Consensus of Vehicle Platoon System With Time-Varying Topology.
    Wang W; Wang C; Guo Y; Luo X; Gao Y
    Front Neurorobot; 2020; 14():53. PubMed ID: 33154721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.
    Dai Y; Kim Y; Wee S; Lee D; Lee S
    ISA Trans; 2015 May; 56():123-34. PubMed ID: 25497595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of a nonholonomic mobile robot using neural networks.
    Fierro R; Lewis FL
    IEEE Trans Neural Netw; 1998; 9(4):589-600. PubMed ID: 18252483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secure Distributed Adaptive Platooning Control of Automated Vehicles Over Vehicular Ad-Hoc Networks Under Denial-of-Service Attacks.
    Xiao S; Ge X; Han QL; Zhang Y
    IEEE Trans Cybern; 2022 Nov; 52(11):12003-12015. PubMed ID: 34033572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Swarming Approach to Optimize the One-Hop Delay in Smart Driving Inter-Platoon Communications.
    Wu Q; Nie S; Fan P; Liu H; Qiang F; Li Z
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30275437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
    Kohl AM; Kelasidi E; Mohammadi A; Maggiore M; Pettersen KY
    Bioinspir Biomim; 2016 Nov; 11(6):065005. PubMed ID: 27882895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges.
    Ravankar A; Ravankar AA; Kobayashi Y; Hoshino Y; Peng CC
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30235894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.