These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance. Cercado B; Cházaro-Ruiz LF; Ruiz V; López-Prieto Ide J; Buitrón G; Razo-Flores E Biosens Bioelectron; 2013 Dec; 50():373-81. PubMed ID: 23891866 [TBL] [Abstract][Full Text] [Related]
3. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Pisciotta JM; Zaybak Z; Call DF; Nam JY; Logan BE Appl Environ Microbiol; 2012 Aug; 78(15):5212-9. PubMed ID: 22610438 [TBL] [Abstract][Full Text] [Related]
4. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes. Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104 [TBL] [Abstract][Full Text] [Related]
5. Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: Significance of microbial structures. Flayac C; Trably E; Bernet N Bioelectrochemistry; 2018 Oct; 123():219-226. PubMed ID: 29874632 [TBL] [Abstract][Full Text] [Related]
6. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells. Stöckl M; Teubner NC; Holtmann D; Mangold KM; Sand W ACS Appl Mater Interfaces; 2019 Mar; 11(9):8961-8968. PubMed ID: 30730701 [TBL] [Abstract][Full Text] [Related]
7. A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes. Mier AA; Olvera-Vargas H; Mejía-López M; Longoria A; Verea L; Sebastian PJ; Arias DM Chemosphere; 2021 Nov; 283():131138. PubMed ID: 34146871 [TBL] [Abstract][Full Text] [Related]
8. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions. Rago L; Baeza JA; Guisasola A Bioelectrochemistry; 2016 Jun; 109():57-62. PubMed ID: 26855359 [TBL] [Abstract][Full Text] [Related]
9. Performance of microbial electrolysis cells with bioanodes grown at different external resistances. Rago L; Monpart N; Cortés P; Baeza JA; Guisasola A Water Sci Technol; 2016; 73(5):1129-35. PubMed ID: 26942536 [TBL] [Abstract][Full Text] [Related]
10. Damage of anodic biofilms by high salinity deteriorates PAHs degradation in single-chamber microbial electrolysis cell reactor. Ding P; Wu P; Jie Z; Cui MH; Liu H Sci Total Environ; 2021 Jul; 777():145752. PubMed ID: 33684746 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen production from lignocellulosic hydrolysate in an up-scaled microbial electrolysis cell with stacked bio-electrodes. Wang L; Long F; Liang D; Xiao X; Liu H Bioresour Technol; 2021 Jan; 320(Pt A):124314. PubMed ID: 33147527 [TBL] [Abstract][Full Text] [Related]
12. Enrichment of Clostridia enhances Geobacter population and electron harvesting in a complex electroactive biofilm. Rivalland C; Radouani F; Gonzalez-Rizzo S; Robert F; Salvin P Bioelectrochemistry; 2022 Feb; 143():107954. PubMed ID: 34624726 [TBL] [Abstract][Full Text] [Related]
13. Growth and current production of mixed culture anodic biofilms remain unaffected by sub-microscale surface roughness. Pierra M; Golozar M; Zhang X; Prévoteau A; De Volder M; Reynaerts D; Rabaey K Bioelectrochemistry; 2018 Aug; 122():213-220. PubMed ID: 29694942 [TBL] [Abstract][Full Text] [Related]
14. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Yang E; Omar Mohamed H; Park SG; Obaid M; Al-Qaradawi SY; Castaño P; Chon K; Chae KJ Bioresour Technol; 2021 Jan; 320(Pt B):124363. PubMed ID: 33186801 [TBL] [Abstract][Full Text] [Related]
15. A chip-based 128-channel potentiostat for high-throughput studies of bioelectrochemical systems: Optimal electrode potentials for anodic biofilms. Molderez TR; Prévoteau A; Ceyssens F; Verhelst M; Rabaey K Biosens Bioelectron; 2021 Feb; 174():112813. PubMed ID: 33303324 [TBL] [Abstract][Full Text] [Related]
16. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Chiranjeevi P; Patil SA Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076 [TBL] [Abstract][Full Text] [Related]
17. Bioelectrochemical methanation by utilization of steel mill off-gas in a two-chamber microbial electrolysis cell. Spiess S; Sasiain Conde A; Kucera J; Novak D; Thallner S; Kieberger N; Guebitz GM; Haberbauer M Front Bioeng Biotechnol; 2022; 10():972653. PubMed ID: 36159676 [TBL] [Abstract][Full Text] [Related]
18. Bioaugmentation of microbial electrolysis cells with Geobacter sulfurreducens YM18 for enhanced hydrogen production from starch. Ochiai I; Harada T; Jomori S; Kouzuma A; Watanabe K Bioresour Technol; 2023 Oct; 386():129508. PubMed ID: 37468016 [TBL] [Abstract][Full Text] [Related]
19. Acetate limitation selects Geobacter from mixed inoculum and reduces polysaccharide in electroactive biofilm. Li T; Zhou Q; Zhou L; Yan Y; Liao C; Wan L; An J; Li N; Wang X Water Res; 2020 Jun; 177():115776. PubMed ID: 32294591 [TBL] [Abstract][Full Text] [Related]
20. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems. Zhou H; Liu B; Wang Q; Sun J; Xie G; Ren N; Ren ZJ; Xing D Biotechnol Biofuels; 2017; 10():238. PubMed ID: 29075322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]