These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34073203)

  • 1. Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides.
    Zhao Y; Wang S; Fei W; Feng Y; Shen L; Yang X; Wang M; Wu M
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation.
    Arif M; Musleh S; Fida H; Alam T
    Sci Rep; 2024 Jul; 14(1):16992. PubMed ID: 39043738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Machine Learning Algorithms in the Prediction and Design of Anticancer Peptides.
    Basith S; Manavalan B; Shin TH; Lee DY; Lee G
    Curr Protein Pept Sci; 2020; 21(12):1242-1250. PubMed ID: 31957610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Guided Discovery of Non-Hemolytic Membrane Disruptive Anticancer Peptides.
    Zakharova E; Orsi M; Capecchi A; Reymond JL
    ChemMedChem; 2022 Sep; 17(17):e202200291. PubMed ID: 35880810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides.
    Wan Y; Wang Z; Lee TY
    BMC Bioinformatics; 2021 May; 22(1):286. PubMed ID: 34051755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder.
    Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A
    Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo design of anticancer peptides by ensemble artificial neural networks.
    Grisoni F; Neuhaus CS; Hishinuma M; Gabernet G; Hiss JA; Kotera M; Schneider G
    J Mol Model; 2019 Apr; 25(5):112. PubMed ID: 30953170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Computational Methods for Identifying Anticancer Peptides.
    Feng P; Wang Z
    Curr Drug Targets; 2019; 20(5):481-487. PubMed ID: 30068270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer.
    Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S
    J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Molecules; 2019 May; 24(10):. PubMed ID: 31121946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACP-CapsPred: an explainable computational framework for identification and functional prediction of anticancer peptides based on capsule network.
    Yao L; Xie P; Guan J; Chung CR; Zhang W; Deng J; Huang Y; Chiang YC; Lee TY
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39293807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACP-ML: A sequence-based method for anticancer peptide prediction.
    Bian J; Liu X; Dong G; Hou C; Huang S; Zhang D
    Comput Biol Med; 2024 Mar; 170():108063. PubMed ID: 38301519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides.
    Boopathi V; Subramaniyam S; Malik A; Lee G; Manavalan B; Yang DC
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale comparative review and assessment of computational methods for anti-cancer peptide identification.
    Liang X; Li F; Chen J; Li J; Wu H; Li S; Song J; Liu Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33316035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of subtypes of anticancer peptides based on sequential features and physicochemical properties.
    Huang KY; Tseng YJ; Kao HJ; Chen CH; Yang HH; Weng SL
    Sci Rep; 2021 Jun; 11(1):13594. PubMed ID: 34193950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs.
    Huang Y; Feng Q; Yan Q; Hao X; Chen Y
    Mini Rev Med Chem; 2015; 15(1):73-81. PubMed ID: 25382016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective identification and differential analysis of anticancer peptides.
    Zhang L; Hu X; Xiao K; Kong L
    Biosystems; 2024 Jul; 241():105246. PubMed ID: 38848816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating In Silico and In Vitro Approaches to Identify Natural Peptides with Selective Cytotoxicity against Cancer Cells.
    Kao HJ; Weng TH; Chen CH; Chen YC; Chi YH; Huang KY; Weng SL
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 38999958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides.
    Feng G; Yao H; Li C; Liu R; Huang R; Fan X; Ge R; Miao Q
    Comput Biol Med; 2022 Jun; 145():105459. PubMed ID: 35358753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mACPpred 2.0: Stacked Deep Learning for Anticancer Peptide Prediction with Integrated Spatial and Probabilistic Feature Representations.
    Sangaraju VK; Pham NT; Wei L; Yu X; Manavalan B
    J Mol Biol; 2024 Sep; 436(17):168687. PubMed ID: 39237191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.