BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34073216)

  • 1. Revision of Commonly Accepted Warburg Mechanism of Cancer Development: Redox-Sensitive Mitochondrial Cytochromes in Breast and Brain Cancers by Raman Imaging.
    Abramczyk H; Surmacki JM; Brozek-Pluska B; Kopec M
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34073216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Imbalance and Biochemical Changes in Cancer by Probing Redox-Sensitive Mitochondrial Cytochromes in Label-Free Visible Resonance Raman Imaging.
    Abramczyk H; Brozek-Pluska B; Kopec M; Surmacki J; Błaszczyk M; Radek M
    Cancers (Basel); 2021 Feb; 13(5):. PubMed ID: 33668874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double face of cytochrome c in cancers by Raman imaging.
    Abramczyk H; Brozek-Pluska B; Kopeć M
    Sci Rep; 2022 Feb; 12(1):2120. PubMed ID: 35136078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231.
    Abramczyk H; Surmacki J; Kopeć M; Olejnik AK; Kaufman-Szymczyk A; Fabianowska-Majewska K
    Analyst; 2016 Oct; 141(19):5646-58. PubMed ID: 27460599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confocal Raman imaging reveals the impact of retinoids on human breast cancer via monitoring the redox status of cytochrome c.
    Surmacki JM; Abramczyk H
    Sci Rep; 2023 Sep; 13(1):15049. PubMed ID: 37700001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pH dependence of the resonance raman spectra and structural alterations at heme moieties of various c-type cytochromes.
    Kitagawa T; Ozaki Y; Teraoka J; Kyogoku Y; Yamanaka T
    Biochim Biophys Acta; 1977 Sep; 494(1):100-14. PubMed ID: 20152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy.
    Brazhe NA; Treiman M; Brazhe AR; Find NL; Maksimov GV; Sosnovtseva OV
    PLoS One; 2012; 7(9):e41990. PubMed ID: 22957018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue.
    Abramczyk H; Surmacki J; Kopeć M; Olejnik AK; Lubecka-Pietruszewska K; Fabianowska-Majewska K
    Analyst; 2015 Apr; 140(7):2224-35. PubMed ID: 25730442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman imaging and statistical methods for analysis various type of human brain tumors and breast cancers.
    Kopec M; Błaszczyk M; Radek M; Abramczyk H
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120091. PubMed ID: 34175760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman scattering from hemoproteins. Effects of ligands upon the Raman spectra of various C-type cytochromes.
    Kitagawa T; Kyogoku Y; Iizuka T; Ikeda-Saito M; Yamanaka T
    J Biochem; 1975 Oct; 78(4):719-28. PubMed ID: 2584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel strategies of Raman imaging for brain tumor research.
    Anna I; Bartosz P; Lech P; Halina A
    Oncotarget; 2017 Oct; 8(49):85290-85310. PubMed ID: 29156720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction.
    Morimoto T; Chiu LD; Kanda H; Kawagoe H; Ozawa T; Nakamura M; Nishida K; Fujita K; Fujikado T
    Analyst; 2019 Apr; 144(8):2531-2540. PubMed ID: 30839952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman study of multihemic c-type cytochromes from Desulfuromonas acetoxidans.
    Chottard G; Kazanskaya I; Bruschi M
    Eur J Biochem; 2000 Feb; 267(4):1050-8. PubMed ID: 10672013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein conformational changes in tetraheme cytochromes detected by FTIR spectroelectrochemistry: Desulfovibrio desulfuricans Norway 4 and Desulfovibrio gigas cytochromes c3.
    Schlereth DD; Fernández VM; Mäntele W
    Biochemistry; 1993 Sep; 32(35):9199-208. PubMed ID: 8396427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman resolution of a-, b- and c-type cytochromes in membrane vesicles of alkalophilic bacteria.
    Strekas TC
    Biochim Biophys Acta; 1984 May; 765(2):133-7. PubMed ID: 6326818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman investigations of cytochrome c conformational change upon interaction with the membranes of intact and Ca2+-exposed mitochondria.
    Berezhna S; Wohlrab H; Champion PM
    Biochemistry; 2003 May; 42(20):6149-58. PubMed ID: 12755617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman spectroscopy of cytochrome oxidase using Soret excitation: selective enhancement, indicator bands, and structural significance for cytochromes a and a3.
    Woodruff WH; Dallinger RF; Antalis TM; Palmer G
    Biochemistry; 1981 Mar; 20(5):1332-8. PubMed ID: 6261789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman investigations of Escherichia coli-expressed Pseudomonas putida cytochrome P450 and P420.
    Wells AV; Li P; Champion PM; Martinis SA; Sligar SG
    Biochemistry; 1992 May; 31(18):4384-93. PubMed ID: 1581294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman quantification of the redox state of cytochromes b and c in-vivo and in-vitro.
    Kakita M; Kaliaperumal V; Hamaguchi HO
    J Biophotonics; 2012 Jan; 5(1):20-4. PubMed ID: 22076935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Hirsutine induces apoptosis of human breast cancer MDA-MB-231 cells through mitochondrial pathway].
    Huang QW; Zhai NN; Huang T; Li DM
    Sheng Li Xue Bao; 2018 Feb; 70(1):40-46. PubMed ID: 29492513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.