BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34073216)

  • 41. Resonance Raman studies of hepatic microsomal cytochromes P-450: evidence for strong pi basicity of the fifth ligand in the reduced and carbonyl complex forms.
    Ozaki Y; Kitagawa T; Kyogoku Y; Imai Y; Hashimoto-Yutsudo C; Sato R
    Biochemistry; 1978 Dec; 17(26):5826-31. PubMed ID: 728439
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intracellular investigation on the differential effects of 4 polyphenols on MCF-7 breast cancer cells by Raman imaging.
    Mignolet A; Wood BR; Goormaghtigh E
    Analyst; 2017 Dec; 143(1):258-269. PubMed ID: 29214243
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Local-dependency of morphological and optical properties between breast cancer cell lines.
    Lee SH; Kim OK; Lee S; Kim JK
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():132-138. PubMed ID: 30015018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy.
    Walter A; Erdmann S; Bocklitz T; Jung EM; Vogler N; Akimov D; Dietzek B; Rösch P; Kothe E; Popp J
    Analyst; 2010 May; 135(5):908-17. PubMed ID: 20419238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular monitoring of epithelial-to-mesenchymal transition in breast cancer cells by means of Raman spectroscopy.
    Marro M; Nieva C; Sanz-Pamplona R; Sierra A
    Biochim Biophys Acta; 2014 Sep; 1843(9):1785-95. PubMed ID: 24747691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The biochemical, nanomechanical and chemometric signatures of brain cancer.
    Abramczyk H; Imiela A
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():8-19. PubMed ID: 28688336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential susceptibility of nonmalignant human breast epithelial cells and breast cancer cells to thiol antioxidant-induced G(1)-delay.
    Menon SG; Coleman MC; Walsh SA; Spitz DR; Goswami PC
    Antioxid Redox Signal; 2005; 7(5-6):711-8. PubMed ID: 15890017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhomogeneous Molecular Distributions and Cytochrome Types and Redox States in Fungal Cells Revealed by Raman Hyperspectral Imaging Using Multivariate Curve Resolution-Alternating Least Squares.
    Yasuda M; Takeshita N; Shigeto S
    Anal Chem; 2019 Oct; 91(19):12501-12508. PubMed ID: 31483612
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resonance Raman spectroscopy of c-type cytochromes.
    Desbois A
    Biochimie; 1994; 76(7):693-707. PubMed ID: 7893820
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resonance Raman spectroscopic identification of a histidine ligand of b595 and the nature of the ligation of chlorin d in the fully reduced Escherichia coli cytochrome bd oxidase.
    Sun J; Kahlow MA; Kaysser TM; Osborne JP; Hill JJ; Rohlfs RJ; Hille R; Gennis RB; Loehr TM
    Biochemistry; 1996 Feb; 35(7):2403-12. PubMed ID: 8652583
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporating cytochrome P450 3A4 genotype expression and FT-IR/Raman spectroscopy data as means of identification of breast tumors.
    Miller SO; Ewing GP; Howard C; Tachikawa H; Bigler SA; Barber WH; Angel M; McDaniel DO
    Biomed Sci Instrum; 2003; 39():24-9. PubMed ID: 12724863
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of glycerol on photobleaching of cytochrome Raman lines in frozen yeast cells.
    Okotrub KA; Surovtsev NV
    Eur Biophys J; 2018 Sep; 47(6):655-662. PubMed ID: 29704025
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Soret-excited Raman spectroscopy of the spinach cytochrome b6f complex. Structures of the b- and c-type hemes, chlorophyll a, and beta-carotene.
    Picaud T; Le Moigne C; Gomez de Gracia A; Desbois A
    Biochemistry; 2001 Jun; 40(24):7309-17. PubMed ID: 11401579
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells.
    Spink DC; Spink BC; Cao JQ; DePasquale JA; Pentecost BT; Fasco MJ; Li Y; Sutter TR
    Carcinogenesis; 1998 Feb; 19(2):291-8. PubMed ID: 9498279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Advances in Raman imaging combined with AFM and fluorescence microscopy are beneficial for oncology and cancer research.
    Abramczyk H; Imiela A; Brozek-Pluska B; Kopec M
    Nanomedicine (Lond); 2019 Jul; 14(14):1873-1888. PubMed ID: 31305216
    [No Abstract]   [Full Text] [Related]  

  • 56. Resonance Raman spectroscopic study of the caa3 oxidase from Thermus thermophilus.
    Gerscher S; Hildebrandt P; Soulimane T; Buse G
    Biospectroscopy; 1998; 4(6):365-77. PubMed ID: 9851718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resonance raman spectra of CN--bound cytochrome oxidase: spectral isolation of cytochromes a2+, a3(2+), and a3(2+)(CN-).
    Ching YC; Argade PV; Rousseau DL
    Biochemistry; 1985 Aug; 24(18):4938-46. PubMed ID: 3000419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resonance Raman and Fourier transform infrared studies on the subunit I histidine mutants of the cytochrome bo complex in Escherichia coli. Molecular structure of redox metal centers.
    Uno T; Mogi T; Tsubaki M; Nishimura Y; Anraku Y
    J Biol Chem; 1994 Apr; 269(16):11912-20. PubMed ID: 8163490
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Raman micro-spectroscopy monitoring of cytochrome c redox state in Candida utilis during cell death under low-temperature plasma-induced oxidative stress.
    Chen Z; Liu J; Tian L; Zhang Q; Guan Y; Chen L; Liu G; Yu HQ; Tian Y; Huang Q
    Analyst; 2020 Jun; 145(11):3922-3930. PubMed ID: 32307505
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of a resonance Raman marker for cytochrome to monitor stress responses in Escherichia coli.
    Mukherjee R; Verma T; Nandi D; Umapathy S
    Anal Bioanal Chem; 2020 Sep; 412(22):5379-5388. PubMed ID: 32548767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.