These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 34073296)
1. Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol. Kiss G; Rusu G; Bandur G; Hulka I; Romecki D; Péter F Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073296 [TBL] [Abstract][Full Text] [Related]
2. Recovery of Flexible Polyurethane Foam Waste for Efficient Reuse in Industrial Formulations. Kiss G; Rusu G; Peter F; Tănase I; Bandur G Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32664336 [TBL] [Abstract][Full Text] [Related]
3. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation. Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754 [TBL] [Abstract][Full Text] [Related]
4. A case for closed-loop recycling of post-consumer PET for automotive foams. Bedell M; Brown M; Kiziltas A; Mielewski D; Mukerjee S; Tabor R Waste Manag; 2018 Jan; 71():97-108. PubMed ID: 29113836 [TBL] [Abstract][Full Text] [Related]
5. Recycling of Flexible Polyurethane Foam by Split-Phase Alcoholysis: Identification of Additives and Alcoholyzing Agents to Reach Higher Efficiencies. Vanbergen T; Verlent I; De Geeter J; Haelterman B; Claes L; De Vos D ChemSusChem; 2020 Aug; 13(15):3835-3843. PubMed ID: 32469159 [TBL] [Abstract][Full Text] [Related]
6. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams. Borowicz M; Isbrandt M; Paciorek-Sadowska J Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688 [TBL] [Abstract][Full Text] [Related]
7. Phosphorus and nitrogen-containing soybean oil polyols: Effect on the mechanical properties and flame retardancy of polyurethane foam. Öztaşkin D; Yivlik LY; Acaroğlu Degitz İ; Eren T Turk J Chem; 2024; 48(2):237-250. PubMed ID: 39050506 [TBL] [Abstract][Full Text] [Related]
8. Polyurethane Foam Chemical Recycling: Fast Acidolysis with Maleic Acid and Full Recovery of Polyol. Liu B; Westman Z; Richardson K; Lim D; Stottlemyer AL; Farmer T; Gillis P; Hooshyar N; Vlcek V; Christopher P; Abu-Omar MM ACS Sustain Chem Eng; 2024 Mar; 12(11):4435-4443. PubMed ID: 38516400 [TBL] [Abstract][Full Text] [Related]
9. From Bioresources to Thermal Insulation Materials: Synthesis and Properties of Two-Component Open-Cell Spray Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil. Polaczek K; Kurańska M; Malewska E; Czerwicka-Pach M; Prociak A Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763416 [TBL] [Abstract][Full Text] [Related]
10. Lignin as a Partial Polyol Replacement in Polyurethane Flexible Foam. Gondaliya A; Nejad M Molecules; 2021 Apr; 26(8):. PubMed ID: 33921156 [TBL] [Abstract][Full Text] [Related]
11. Study of Aerogel-Modified Recycled Polyurethane Nanocomposites. Gu X; Zhu S; Liu S; Liu Y Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764612 [TBL] [Abstract][Full Text] [Related]
12. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol. de Luca Bossa F; Verdolotti L; Russo V; Campaner P; Minigher A; Lama GC; Boggioni L; Tesser R; Lavorgna M Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708562 [TBL] [Abstract][Full Text] [Related]
13. Study on Green Degradation Process of Polyurethane Foam Based on Integral Utilization and Performance of Recycled Polyurethane Oil-Absorbing Foam. Peng S; Gong D; Zhou Y; Zhang C; Li Y; Zhang C; Sheng Y Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744329 [TBL] [Abstract][Full Text] [Related]
14. Insight into Chemical Recycling of Flexible Polyurethane Foams by Acidolysis. Grdadolnik M; Drinčić A; Oreški A; Onder OC; Utroša P; Pahovnik D; Žagar E ACS Sustain Chem Eng; 2022 Jan; 10(3):1323-1332. PubMed ID: 35096493 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams. Amundarain I; Miguel-Fernández R; Asueta A; García-Fernández S; Arnaiz S Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335488 [TBL] [Abstract][Full Text] [Related]
16. Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams. Leszczyńska M; Malewska E; Ryszkowska J; Kurańska M; Gloc M; Leszczyński MK; Prociak A Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916735 [TBL] [Abstract][Full Text] [Related]
17. A study on coconut fatty acid diethanolamide-based polyurethane foams. Leng X; Li C; Cai X; Yang Z; Zhang F; Liu Y; Yang G; Wang Q; Fang G; Zhang X RSC Adv; 2022 Apr; 12(21):13548-13556. PubMed ID: 35527733 [TBL] [Abstract][Full Text] [Related]
18. Study and Characterization of Regenerated Hard Foam Prepared by Polyol Hydrolysis of Waste Polyurethane. Gu X; Wang X; Guo X; Liu S; Li Q; Liu Y Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987224 [TBL] [Abstract][Full Text] [Related]
19. New Poly(lactide-urethane-isocyanurate) Foams Based on Bio-Polylactide Waste. Paciorek-Sadowska J; Borowicz M; Isbrandt M Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960465 [TBL] [Abstract][Full Text] [Related]
20. Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil. Kurańska M; Barczewski R; Barczewski M; Prociak A; Polaczek K Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33322670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]